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To Enes Novelli Burns, my favourite teacher

My books are water; those of the great geniuses is wine.
Everybody drinks water.

Mark Twain
Notebooks and Journals, Volume III (1883–1891)
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Preface

It has been a century since R W Wood observed anomalous dispersion and
Sommerfeld, Brillouin and others developed the theory of the propagation of
light in anomalously dispersive media. The problem was to reconcile (1) the
possibility that the (measurable) group velocity of light could exceed c with (2) the
requirement of relativity theory that no signal can be transmitted superluminally.
Sommerfeld and Brillouin concluded that a group velocity is not, in general, the
velocity with which a signal, properly defined as a carrier of information, can be
transmitted.

The work of Sommerfeld and Brillouin, especially Brillouin’s Wave
Propagation and Group Velocity (1960), is often cited. They focused attention
on signal velocity, group velocity, and the velocity of energy propagation; and,
according to Brillouin, ‘a galaxy of eminent scientists, from Voigt to Einstein,
attached great importance to these fundamental definitions’. But apparently
this classic work is not widely read, for otherwise the recent demonstrations of
superluminal group velocity would not have sparked so much discussion. The
news media, with the hyperbole characteristic of the times, have often as not been
misleading or wrong but so have the reported comments of some physicists.

The principal development since the publication of Brillouin’s monograph is
the experimental study of ‘abnormal’ group velocities—group velocities that are
superluminal, infinite, negative, or zero. The literature on the subject has grown
substantially. One purpose of this book is to review, vis-à-vis this development,
the most basic ideas about dispersion relations, causality, propagation of light in
dispersive media, and the different velocities used to characterize the propagation
of light.

Another aspect of the subject is the role of quantum effects. Fermi
was among the first to discuss the problem of light propagation in quantum
electrodynamics at the most basic level, namely the emission of a photon by
an atom and its subsequent absorption by another atom. He obtained the right
answer, or part of the right answer, for the time dependence of the excitation
probability of the second atom. But his approach, based as it was on a certain
approximation, did not provide proof of causal propagation and, consequently,
the ‘Fermi problem’ has been revisited periodically in the past few decades.

Quantum theory ‘protects’ special relativity from what might otherwise
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appear to be superluminal communication. Thus, it is impossible to use the
‘spooky action at a distance’ suggested by quantum correlations of the Einstein–
Podolsky–Rosen (EPR) type to devise a superluminal communication scheme.
In one suggested scheme, it is the spontaneous emission noise that prevents
superluminal communication when one photon of an EPR pair is amplified by
stimulated emission. The fact that such schemes must, in general, be impossible
led to the no-cloning theorem.

One point that is emphasized here is that any measurable advance in time of
a ‘superluminal’ pulse is reduced by noise arising from the field, the medium in
which the field propagates, or the detector.

The group velocity of light can also be extremely small. ‘Slow light’ with
group velocities on the order of 10 m s−1 was first directly observed in 1999 and
shortly thereafter it was demonstrated that pulses of light could even be brought
to a full stop, stored, and then regenerated. These developments have been based
largely on the quantum interference effects associated with electromagnetically
induced transparency. Slow light raises less fundamental questions, perhaps, than
‘fast light’ but it might have greater potential for applications. One application
might be to quantum memories, as the storage and regeneration of light can be
done without loss of information as to the quantum state of the original pulse:
this information is temporarily imprinted in the slow-light medium. The ability
to coherently control light in this way could also find applications eventually in
optical communications.

The third major topic addressed in this book is ‘left-handed light’—light
propagation in media with negative refraction. Here it is not so much the variation
of the refractive index with frequency that matters, as in the case of fast light and
slow light, but rather the index itself at a given frequency. Left-handedness refers
to the fact that, when the refractive index is negative, the electric field vector E,
the magnetic field vector H, and the wavevector k of a plane waveform a left-
handed triad. Nature has apparently not produced media with negative refractive
indices; however, so-called metamaterials with this property have been created in
the laboratory.

The propagation of light in metamaterials is predicted to exhibit various
unfamiliar properties. For instance, the Doppler effect is reversed, so that a
detector moving towards a source of radiation sees a smaller frequency than a
stationary observer. Light bends the ‘wrong’ way when it is incident upon a
metamaterial and it is theoretically possible to construct a ‘perfect’ lens in a
narrow spectral range. The many potential applications of metamaterials have
spurred a very rapid growth in the number of publications in this area. The last two
chapters are an introduction to some of the foundational work on metamaterials
and left-handed light.

My recent interest in these areas began with enlightening discussions with
R Y Chiao. I also enjoyed talking with other participants in a three-week
workshop at the Institute for Theoretical Physics in Santa Barbara in 2002,
and discussing related matters on that and other occasions with many excellent
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physicists including Y Aharonov, J F Babb, S M Barnett, P R Berman, H A Bethe,
M S Bigelow, R W Boyd, R J Cook, G D Doolen, J H Eberly, G V Eleftheriades,
H Fearn, M Fleischhauer, K Furuya, I R Gabitov, D J Gauthier, S A Glasgow,
R J Glauber, D F V James, P L Knight, P G Kwiat, W E Lamb, Jr, U Leonhardt,
R Loudon, G J Maclay, L Mandel, M Mojahedi, G Nimtz, K E Oughstun,
J Peatross, J B Pendry, E A Power, B Reznik, M O Scully, B Segev, D R Smith,
A M Steinberg, L J Wang, H G Winful, E Wolf, and R W Ziolkowski. I have
probably left out the names of many other people with whom I had helpful but
long-forgotten discussions.

I apologize to the many authors whose work I have not cited. There is a huge
literature relating to the topics covered in this book, and I have not cited work that
I have not read or understood, let alone publications I have not even seen.

The three major subjects of this book have attracted particular interest in just
the past few years. They are related by the fact that they all involve unusual values
or variations of the refractive index. I have tried to focus on the basic underlying
physics. The many citations to recent work do not represent an attempt to make
this book as up-to-date as possible; it does reflect my opinion that this work is of
considerable fundamental importance.

I thank Tom Spicer of the Institute of Physics for suggesting this book and for
his patience when I failed to finish it by the promised delivery date. Dan Gauthier
of Duke University made helpful suggestions for which I am grateful.

Peter W Milonni
Los Alamos, New Mexico
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Chapter 1

In the Beginning

1.1 Maxwell’s equations and the velocity of light

The variations of the phase velocity or the group velocity of light in different
media are of great practical importance. We will be concerned primarily with
situations where these variations are unusual and not yet of any practical utility.
Our considerations will be based on the laws of electromagnetism:

∇ · E = ρ/ε0 (1.1)

∇ · B = 0 (1.2)

∇ × E = − ∂ B
∂ t

(1.3)

∇ × B = µ0 J + ε0µ0
∂ E
∂ t

. (1.4)

These equations are so incredibly important that we begin with a brief discussion
of their conceptual foundations, even though this has been done thousands of
times before.

The definite pattern formed by iron filings around a bar magnet, or by
sawdust around an electrified body, led Faraday to suggest that the space around
such objects is filled with lines of force. Electric and magnetic forces, from this
point of view, are transmitted by the medium between the objects rather than
arising from ‘action at a distance’. Maxwell was greatly impressed and influenced
by this idea of what he called an electromagnetic field [1]:

Faraday . . . saw lines of force traversing all space where the
mathematicians saw centres of force attracting at a distance; Faraday
saw a medium where they saw nothing but distance; Faraday sought
the seat of the phenomena in real actions going on in the medium, they
were satisfied that they had found it in a power of action at a distance
. . .
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2 In the Beginning

When I had translated what I considered to be Faraday’s ideas into
a mathematical form, I found that in general the results of the two
methods coincided . . . but that Faraday’s methods resembled those in
which we begin with the whole and arrive at the parts by analysis, while
the ordinary mathematical methods were founded on the principle of
beginning with the parts and building up the whole by synthesis.

It has been said that Maxwell’s first great achievement in electromagnetism
was to ‘translate into mathematical form’ the fundamental laws discovered by his
predecessors and that his second great achievement was to deduce that these laws
were incomplete.

The laws stated in the first three equations required no modification.
Equation (1.1) is Gauss’s law: the electric flux φE =

∮
E · dS over any closed

surface is proportional to the electric charge Q inside the surface; the differential
form (1.1) follows from the divergence theorem. Gauss’s law can be obtained
from the formula E(r) = q r/4πε0r3 for the electric field of a point charge q but
this formula applies only if the charge is at rest in our reference frame, whereas
Gauss’s law applies always.

Equation (1.2) says there are no magnetic ‘charges’. The magnetic flux
φB =

∮
B · dS over any closed surface is zero.

Equation (1.3) is Faraday’s law of induction. In integral form, it states that a
changing magnetic flux induces an electromotive force

emf =
∮

C
E · dr = −dφB

dt
(1.5)

where C is a closed circuit (e.g. a wire loop or just a closed path in free space)
and φB is the magnetic flux over any surface enclosed by C . Historians tell us that
Oersted’s discovery, that an electric current can cause a deflection of a compass
needle, led Faraday to believe that magnetism can likewise produce electricity.
Evidently he tried for some years to prove this by looking, for instance, for
a steady current in a copper ring wrapped around a bar magnet. In 1831, he
demonstrated that a current is induced in a conducting coil of wire if the current
in a second coil increases or decreases, i.e. if a conductor is in relative motion with
respect to a magnetic flux. A changing current in a circuit A not only induces a
current in a neighbouring circuit B but also, as discovered by Henry, a smaller,
opposing current in circuit A. The minus sign in equations (1.3) and (1.5) states
that any induced current will be in a direction such that its own magnetic field will
oppose the change in the magnetic flux. That is, the minus sign enforces Lenz’s
law.

The magnetic field produced by an electric current is governed by Ampère’s
law: the line integral of B around a closed loop C is proportional to the electric
current I flowing through the area bounded by C,

∮
B · dr = µ0 I = µ0

∫
J · dS (1.6)
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Maxwell’s equations and the velocity of light 3

or
∇ × B = µ0 J . (1.7)

Maxwell’s ‘second great achievement’ (in electromagnetism) was to replace
(1.7) by (1.4), i.e. to add to J in (1.7) the displacement current

JD = ε0
∂ E
∂ t

. (1.8)

How he arrived at this modification with his mechanical models and analogies
is a fascinating story that is not necessary or appropriate to recount here. (An
excellent, succinct discussion is given by Longair [2].) Let us just remind
ourselves that, without the displacement current in (1.4), we would not obtain
the equation expressing conservation of electric charge:

∇ · J + ∂ρ

∂ t
= 0. (1.9)

In static situations, the fields E and B are uncoupled and electricity and
magnetism are separate concerns. A time-varying E field, however, can create
a B field and vice versa. In a region of space with no charges and currents
(ρ = J = 0), Maxwell’s equations imply

∇2 E − ε0µ0
∂2 E
∂ t2 = ∇2 B − ε0µ0

∂2 B
∂ t2 = 0 (1.10)

i.e. electromagnetic waves with propagation velocity

c = 1/
√

ε0µ0. (1.11)

The first evidence that the velocity of light is finite was obtained, as everyone
knows, by Roemer (1676), prior to whom the majority opinion was that light
travels instantaneously. The orbital plane of Jupiter’s moons is close to the plane
in which Jupiter and the earth orbit the sun and the moons, as seen from the
earth, are periodically eclipsed by Jupiter. Roemer noticed that the time between
successive eclipses (about 42 1

2 hours) of the innermost moon was larger when
the earth was moving away from Jupiter and smaller when the earth was moving
towards Jupiter and he attributed this variation to the finite velocity of light. Thus,
when the earth is moving away from Jupiter, each succeeding ‘signal’ that an
eclipse has taken place must travel for a greater time (about 14 s greater) in
order to ‘catch up’ with the earth. Roemer estimated that it takes light about
22 min to travel a distance equal to the diameter of the earth’s orbit about the
sun. (Using c = 2.998 × 108 m s−1 and 2.98 × 1011 m for the diameter D of
the earth’s orbit, we obtain 17 min for the time it takes light to traverse a distance
D, compared with Roemer’s estimate of 22 min obtained by adding up the time
delays in successive eclipses as the earth moved from a point where it is closest
to Jupiter to the diametrically opposite point in its orbit.)
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4 In the Beginning

Wroblewski [3] has written an entertaining article about the incorrect
accounts of Roemer’s work found in many textbooks. For instance, whereas
specific (and different!) values of c are ascribed to Roemer in various texts,
Roemer did not actually state a number for the velocity of light: as discussed
by Wroblewski, he was interested primarily in arguing that c is finite rather than
in figuring out an accurate numerical value for it.

Nearly two centuries later, Fizeau (1849) made the first terrestrial
measurement of c using a rotating toothed wheel. Light passing through an
opening in the wheel could pass through an opening or be blocked after reflection
from a mirror about 8.6 km away. From the wheel radius and angular velocity,
and the distance between the openings, Fizeau obtained 3.15 × 108 m s−1 for
the velocity of light. A year later, Foucault peformed similar experiments using a
rotating mirror instead of a toothed wheel and obtained 2.986 × 108 m s−1. He
also found by this method that the velocity of light in water is 1.3 times smaller
than in air.1 The rotating-mirror method was used by Michelson, in a long series
of experiments, to determine a velocity of light close to c = 2.998 m s−1. It
is perhaps worth noting that, with photodiodes and the other niceties of modern
technology, the rotating-mirror method can easily be employed to measure c to an
accuracy of a few per cent or better in undergraduate laboratories.

It is not generally recognized that these experiments actually determine the
group velocity of light (section 1.5).

Another kind of determination of c is suggested [4] by comparing the force
between two charges separated by a distance r ,

Fc = 1
4πε0

q1q2

r2 ≡ k
q1q2

r2 (1.12)

with the force between two parallel wires of length & and separation r , carrying
electric currents i1 and i2:

Fm = µ0&
i1i2

2πr
≡ K

i1i2

r
&. (1.13)

The ratio k/K = c2/2. Along these lines, Maxwell wrote in a letter to Faraday
on 19 October 1861 that [5]

[F]rom the determination by Kohlrausch and Weber of the numerical
relation between the statical and magnetic effects of electricity, I have
determined the elasticity of the medium in air, and assuming that it is
the same with the luminiferous ether I have determined the velocity of
propagation of transverse vibrations.

1 In the corpuscular theory of light, it was assumed that the particles of light would be attracted
by the denser medium and accelerated by it rather than slowed down. Newton’s writing on the
subject suggests that his adherence to the corpuscular theory was not as strong as that of many of
his successors.
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Refractive index 5

The result is 193 088 miles per second (deduced from electrical and
magnetic experiments).

Fizeau has determined the velocity of light = 193 118 miles per second
by direct experiment.

This coincidence is not merely numerical. I worked out the formulae
in the country, before seeing Weber’s number, which is in millimetres,
and I think we have now strong reason to believe, whether my theory
is correct or not, that the luminiferous and the electromagnetic medium
are one.

Maxwell took part in similar experiments. Kirchhoff, in theoretical work
evidently unknown to Maxwell, had noted earlier (1857) that the velocity he found
for the propagation of an electric potential along a telegraph wire, in the limit of
zero resistance, was close to the velocity of light [6].

The direct experimental proof of Maxwell’s theory by Hertz in 1887 came
only after Maxwell’s death in 1879. Hertz produced oscillatory sparks between
two metal spheres with an induction coil and found that this caused sparks across
a second pair of metal spheres some metres away. He showed that the disturbance
produced at the transmitter was reflected by conductors, focused by a concave
mirror, and refracted by dielectrics. He also measured the wavelength (9.6 m
when the frequency of the transmitter was 3×107 cycles per second) by producing
standing waves and using the spark gap detector to determine the nodes of the
field. He thereby deduced that the velocity of the electromagnetic disturbance
was 3 × 108 m s−1.

Bates [7] has given a concise summary and nearly 100 references on the
modern methods for measuring the velocity of light, which are based on the
relation νλ = c between frequency (ν) and wavelength (λ). These methods
were made possible by the development of frequency-stabilized lasers allowing
accurate measurements of both ν and λ. In 1983, the redefinition of the metre
by the International Committee on Weights and Measurements resulted in the
following value for the velocity of light in vacuum:

c = 299 792 458 m s−1. (1.14)

1.2 Refractive index

Fast light, slow light, and left-handed light are all associated with unusual values
or variations of the refractive index. It will suffice, in the beginning, to consider
the refractive index n(ω) of a dilute gas of atoms. We will follow the semiclassical
approach of treating the field classically and the atoms quantum mechanically.
Since the phenomena we consider are linear in the electric and magnetic fields
and the Heisenberg-picture operators for the field in quantum electrodynamics
satisfy formally the same (Maxwell) equations as their classical counterparts, it is
easy but not necessary for our purposes to quantize the field [8].
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6 In the Beginning

An electric field E0 cos ωt induces an electric dipole moment

p = α(ω)E0 cos ωt (1.15)

in an atom, where α(ω) is the polarizability. p is actually the quantum-
mechanical expectation value of the induced dipole moment which, for our
purposes, can be treated as a classical variable. Equation (1.15) is valid as long as
the field is not too strong; otherwise p depends nonlinearly on E0. How ‘strong’
the field has to be to produce a nonlinear response by the atom depends on the
frequency ω. We will assume for now that the field is not strong.

If there are N atoms per unit volume, the polarization density is P = N p.
Recall that a charge density ρpol = −∇ · P is associated with the polarization
density, so that, in the case of a material medium, equation (1.1) is replaced by

∇ · E = 1
ε0

(ρ − ∇ · P) (1.16)

or
∇ · D = ρ (1.17)

where
D = ε0 E + P ≡ ε E (1.18)

and ρ is now the ‘free’ charge density and ε0 is the permittivity of the medium:

ε = ε0

(
1 + Nα

ε0

)
≡ ε0(1 + χ) ≡ κε0 (1.19)

where χ and κ are the electric susceptibility and dielectric constant, respectively,
of the medium.

At optical frequencies, the magnetic permeability is essentially unaltered
from its free-space value µ0, so we will take µ = µ0 and not bother at this
point to introduce the vector H . That is, we take the Maxwell equations in the
case of a material medium to be

∇ · D = ρ (1.20)

∇ · B = 0 (1.21)

∇ × E = − ∂ B
∂ t

(1.22)

∇ × B = µ0 J + µ0
∂ D
∂ t

. (1.23)

Consider, for simplicity, a medium with no free charges or currents (ρ =
J = 0) and permittivity ε0(ω) independent of position. Then, with E =
E0 exp(−iωt) and B = B0 exp(−iωt), equations (1.20)–(1.23) imply

∇2 E0 + n2(ω)
ω2

c2 E0 = ∇2 B0 + n2(ω)
ω2

c2 B0 = 0 (1.24)
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Refractive index 7

where2

n2(ω) = ε(ω)/ε0 = κ(ω) = 1 + N
ε0

α(ω). (1.25)

For Nα(ω)/ε0 & 1, as is typical of a dilute gas, the refractive index is given by

n(ω) ∼= 1 + N
2ε0

α(ω). (1.26)

It is a straightforward exercise in perturbation theory to derive the ‘Kramers–
Heisenberg’ formula for the polarizability of an atom in state i . For a one-electron
atom, this formula is

αi (ω) = e2

m

∑

j

fi j

ω2
j i − ω2

(1.27)

where e and m are the electron charge and mass, ω j i = (E j − Ei )/ is the
transition frequency (rad s−1) between eigenstates of energy E j and Ei , and
fi j is the transition oscillator strength. For non-degenerate states, i and j ,
fi j = 2mω j i |d j i |2/3 , where d j i is the electric dipole matrix element between
states i and j . The oscillator strengths satisfy the (Thomas–Reiche–Kuhn) sum
rule,

∑
j fi j = 1. (For a Z -electron atom,

∑
j fi j = Z .)

Suppose a plane wave of frequency ω is incident on a half-space in which
there is a uniform distribution of N atoms per unit volume. Each atom has a
dipole moment induced by the total electric field at its position, i.e. the incident
field plus the fields radiated by all the other atoms. The total field at any point
is the incident field at that point plus the field at that point produced by all the
atoms. This total field, at any point inside the medium, has two parts. One part
exactly cancels the incident field. The other part propagates with phase velocity
c/n(ω), where

n(ω) = 1 + 1
2ε0

∑

i

Ni αi (ω) = 1 + e2

2mε0

∑

i

∑

j

Ni fi j

ω2
j i − ω2

(1.28)

is the refractive index. Ni is the number density of atoms in energy eigenstate i
and

∑
i Ni = N . In writing (1.28), it is assumed that the gas is sufficiently dilute

that local field corrections can be ignored, i.e. n(ω) ∼= 1. Note that the expression
(1.26) for n(ω) assumes that all the atoms are in a single (ground) state.

The fact that part of the field radiated by the induced dipoles cancels the
incident field, while the remaining part propagates at the phase velocity c/n(ω), is
called the Ewald–Oseen extinction theorem [9]. (A pedagogical treatment may be
found in [10].) The summation of the applied field and the dipole fields at points
inside or outside the medium results in the Fresnel formulas for transmission and
reflection [9].

2 More generally, n2(ω) = ε(ω)µ(ω)/ε0µ0 = [µ(ω)/µ0][1 + Nα(ω)/ε0].
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8 In the Beginning

These results of the integral formulation of Maxwell’s equations are very
pretty. Of course, the same results are obtained in the much more commonly
employed differential form of Maxwell’s equations, although the ‘extinction’ of
the incident field is not explicit as in the integral formulation.

The contribution to the refractive index (1.28) from the 1 ↔ 2 transition
(i = 1, j = 2) is

n(ω)12 = 1 + e2

2mε0

(
N1 f12

ω2
21 − ω2

+ N2 f21

ω2
12 − ω2

)

= 1 + e2 f12

2mε0

(
N1 − N2

ω2
21 − ω2

)

.

(1.29)
Thus, the population N2 of the upper state of a transition makes a contribution
to the index that has the opposite sign to the contribution of the lower-state
population N1. This effect was observed by Ladenburg and Kopfermann in their
study of the variation of the refractive index with currect in an electric discharge
[11].

Effects like collisions and spontaneous emission require us to modify
equation (1.29) to include a frictional damping rate γ in the denominator:

n(ω) = 1 + e2 f12

2mε0

(
N1 − N2

ω2
21 − ω2 − 2iγω

)

. (1.30)

This modification ensures that n(ω) in our theory does not ‘blow up’ when the
field frequency ω equals the transition frequency ω21. When ω ∼= ω21, we have

n(ω) ∼= 1 + e2 f12

4mε0ω21

N1 − N2

ω21 − ω − iγ
. (1.31)

Let us assume that N1 − N2 ≈ N1, i.e. that most atoms remain with high
probability in the lower state of the transition. Then

n(ω) ∼= 1+ Ne2 f
4mε0ω0

1
ω0 − ω − iγ

= 1+ K
ω0 − ω − iγ

= nR(ω)+inI(ω) (1.32)

where

nR(ω) = 1 + K
ω0 − ω

(ω0 − ω)2 + γ 2 (1.33)

nI(ω) = K
γ

(ω0 − ω)2 + γ 2 (1.34)

and, for notational simplicity, we have replaced f12 by f , N1 by N , and ω21 by
ω0.

Normally the refractive index increases with increasing frequency but near
an absorption line nR(ω) decreases with increasing frequency (figure 1.1). Such
‘anomalous dispersion’ in sodium vapour was observed by R W Wood in 1904
[12]. As discussed in section 1.5, the group velocity of light can exceed c
in a spectral region of anomalous dispersion and this possibility raised serious
concerns in connection with the special theory of relativity.
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Causality and dispersion relations 9

Figure 1.1. (γ /K )[nR(ω) − 1] versus (ω − ω0)/γ .

1.3 Causality and dispersion relations

There are many systems and devices such that a time-dependent input Fin(t)
produces an output Fout(t) that (a) depends linearly on Fin(t) and (b) is time-
invariant in the sense that a shift in time of Fin produces the same shift in time of
Fout. These properties are accounted for by writing

Fout(t) =
∫ ∞

−∞
dt ′ G(t − t ′)Fin(t ′). (1.35)

Introducing the Fourier transforms fout(ω), g(ω), and fin(ω) by writing

G(τ ) = 1
2π

∫ ∞

−∞
dω g(ω)e−iωt (1.36)

and likewise for Fout and Fin, we see that (1.35) implies that

fout(ω) = g(ω) fin(ω). (1.37)

Suppose there is no input to our ‘black box’ until some time t = 0, so that

Fin(t) = 1
2π

∫ ∞

−∞
dω fin(ω)e−iωt = 0 for all t < 0 (1.38)

meaning that there is complete destructive interference of the Fourier components
of Fin for t < 0. Causality, in the sense that there should be no output before there
is any input, requires that Fout(t) = 0 for t < 0.
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10 In the Beginning

Now imagine that our black box does nothing but absorb a single frequency
component ω of the input. Then its output would be Fin(t) minus the Fourier
component at frequency ω of Fin(t), which does not vanish for t < 0. In other
words, if we had a perfect filter—one that simply absorbs a single frequency
component of an input signal—there would be an output before there is any input,
a violation of causality (figure 1.2). It must, therefore, be impossible to have a
perfect filter, one that absorbs one frequency without affecting any other frequency
components of an input signal. Any realizable filter must evidently produce phase
shifts in other Fourier components, in such a way that they interfere destructively
for all t < 0, so that, in fact, there is no output before any input [13].

The mathematical expression of this requirement is a Kramers–Krönig
dispersion relation between the real and imaginary parts of the response function
g(ω). No output before any input means that G(t − t ′) = 0 for t < t ′, so that

g(ω) =
∫ ∞

−∞
dτ G(τ )eiωτ =

∫ ∞

0
dτ G(τ )eiωτ . (1.39)

Thus, the integration over τ extends over only positive values of τ and, for such
values, g(ω) is analytic in the upper half of the complex ω plane. In other words,
causality requires the Fourier transform g(ω) of the response function G(τ ) to be
analytic in the upper half of the complex frequency plane3.

Cauchy’s theorem states that

g(ω) = 1
2π i

∮

C

g(ω′)
ω′ − ω

dω′ (1.40)

where the contour C is indicated in figure 1.3. We assume that g(ω) → 0 faster
than 1/|ω| as |ω| → ∞, so that the contribution from the semicircle vanishes.
Then, if ω is on the real axis (figure 1.3),

g(ω) = 1
π i

P
∫ ∞

−∞

g(ω′)
ω′ − ω

dω′ (1.41)

i.e. the real and imaginary parts of g(ω) satisfy the relations

Re[g(ω)] = 1
π

P
∫ ∞

−∞

Im[g(ω′)]
ω′ − ω

dω′ (1.42)

Im[g(ω)] = − 1
π

P
∫ ∞

−∞

Re[g(ω′)]
ω′ − ω

dω′ (1.43)

where P denotes the Cauchy principal value4. In fact, each of these Hilbert
transform relations may be shown to imply the other.
3 If we use exp (iωt) instead of exp (−iωt) for the time dependence of the frequency component ω,
causality requires that g(ω) be analytic in the lower half of the complex ω plane.
4 P

∫ ∞
−∞ ≡ limε→0(

∫ ω−ε
−∞ +

∫ ∞
ω+ε).
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Causality and dispersion relations 11

Figure 1.2. From Toll [13], with permission: ‘This figure illustrates schematically the
basic reason for the logical connection of causality and dispersion. An input A which is
zero for times t less than zero is formed as a superposition of many Fourier components
such as B, each of which extends from t = −∞ to t = ∞. These components produce
the zero-input signal by destructive interference for t < 0. It is impossible to design a
system which absorbs just the component B without affecting other components, for in
this case the output would contain the complement of B during times before the onset of
the input wave, in contradiction with causality. Thus causality implies that absorption of
one frequency must be accompanied by a compensating shift of phase of other frequencies;
the required phase shifts are prescribed by the dispersion relation.’

Note that analyticity in the upper half of the complex ω plane is not enough
to guarantee that the Hilbert transform relations are satisfied: we also require that
g(ω) falls off faster than 1/|ω| as |ω| → ∞. Suppose that G(τ ) has a Taylor
series expansion about τ = 0. Then [14]

g(ω) =
∫ ∞

0
dτ [G(0) + G′(0)τ + · · ·]eiωτ = iG(0)

ω
− G′(0)

ω2 + · · · . (1.44)
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12 In the Beginning

Figure 1.3. Integration contour assumed in writing equations (1.40) and (1.41).

Since G(τ ) = 0 for τ < 0, it is reasonable to assume that G(0) = 0. It follows
that, if G(τ ) has a Taylor series expansion about τ = 0+, g(ω) does, in fact, go
to zero faster than 1/|ω| as |ω| → ∞. A rigorous discussion of the basis for the
Hilbert transform relations is given by Toll [13] and Nussenzveig [15]. For our
purposes, it will suffice to require for the validity of (1.42) and (1.43) that g(ω) is
square-integrable and analytic in the upper half of the complex plane5.

For real input and output functions Fin(t) and Fout(t), equation (1.35)
requires that G(τ ) is real and, therefore, from (1.39), that

g∗(ω) = g(−ω) (1.45)

or, in terms of the real (gR) and imaginary (gI) parts of g(ω),

gR(−ω) = gR(ω) (1.46)

gI(−ω) = − gI(ω). (1.47)

These relations allow us to write (1.42) and (1.43) in a different form:

gR(ω) = 1
π

P
∫ ∞

0

gI(ω
′)

ω′ − ω
dω′ + 1

π
P

∫ 0

−∞

gI(ω
′)

ω′ − ω
dω′ = 2

π
P

∫ ∞

0

ω′gI(ω
′)

ω′2 − ω2 dω′

(1.48)
and, similarly,

gI(ω) = − 2
π

P
∫ ∞

0

ωgR(ω′)
ω′2 − ω2 dω′. (1.49)

The (causal) relation P(ω) = ε0[n2(ω) − 1]E(ω) between the polarization and
the electric field implies that g(ω) = n2(ω)−1 satisfies these dispersion relations.
5 The more rigorous treatments are based on the Titchmarsh theorem, which can be stated as follows
[13]. If g(ω) is square-integrable over the real ω-axis, then any one of the following three conditions
implies the other two: (1) The Fourier transform G(τ ) of g(ω) [equation (1.39)] vanishes for τ < 0.
(2) g(ωR + iωI) is analytic in the upper half of the complex ω plane, approaches g(ωR) almost
everywhere as ωI → 0, and is square-integrable along any line above and parallel to the real axis. (3)
gR(ω) and gI(ω) satisfy the Hilbert transform relations (1.42) and (1.43).
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Causality and dispersion relations 13

Of more interest to us are dispersion relations involving n(ω). If the function√
n2(ω) has no branch points and is analytic in the upper half-plane, it follows

that n(ω) is analytic in the upper half-plane. However, n(ω) does not satisfy
the other condition necessary for it to satisfy the previous dispersion relations: it
is not square-integrable. In fact, physical considerations [as well as formulas
like (1.30)] suggest that n(ω) → 1 as ω → ∞: a material medium cannot
respond to infinitely large frequencies, which therefore propagate as if there were
no medium. But it is still possible to derive a dispersion relation ‘with subtraction’
for n(ω), as follows.

Let / be some real frequency and consider [n(ω) − n(/)]/(ω − z), where
z is a point in the lower half of the complex ω plane. This function satisfies the
conditions for equation (1.41) to apply:

n(ω) − n(/) = ω − z
π i

P
∫ ∞

−∞

[n(ω′) − n(/)]
(ω′ − z)(ω′ − ω)

dω′. (1.50)

Subtracting the corresponding expression with ω = /, we have

n(ω) − n(/) = 1
π i

P
∫ ∞

−∞

[n(ω′) − n(/)]
ω′ − z

[
ω − z
ω′ − ω

− / − z
ω′ − /

]
dω′

= ω − /

π i
P

∫ ∞

−∞

[n(ω′) − n(/)]
(ω′ − ω)(ω′ − /)

dω′ (1.51)

so that the function [n(ω) − n(/)]/(ω − /) satisfies (1.41). In particular, taking
/ → ∞,

n(ω) = n(∞) + 1
π i

P
∫ ∞

−∞

[n(ω′) − n(∞)]
ω′ − ω

dω′ (1.52)

or, assuming n(∞) = 1 for the reasons mentioned earlier,

n(ω) = 1 + 1
π i

P
∫ ∞

−∞

[n(ω′) − 1]
ω′ − ω

dω′ (1.53)

nR(ω) = 1 + 1
π

P
∫ ∞

−∞

nI(ω
′)

ω′ − ω
dω′ (1.54)

nI(ω) = − 1
π

P
∫ ∞

−∞

[nR(ω′) − 1]
ω′ − ω

dω′. (1.55)

We also have the symmetry relations

n∗(ω) = n(−ω)

nR(−ω) = nR(ω)

nI(−ω) = − nI(ω) (1.56)

analogous to (1.45)–(1.47), which allow us to rewrite (1.54) and (1.55)
alternatively as

nR(ω) = 1 + 2
π

P
∫ ∞

0

ω′nI(ω
′)

ω′2 − ω2 dω′ (1.57)
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14 In the Beginning

nI(ω) = − 2ω

π
P

∫ ∞

0

[nR(ω′) − 1]
ω′2 − ω2 dω′. (1.58)

We can obtain the dispersion relations (1.54) and (1.55) in another way,
without having to exclude branch points. Consider a plane wave propagating
in the z direction and write the electric field amplitude at z = 0 as

E(0, t) =
∫ ∞

−∞
dω A(ω)e−iωt . (1.59)

According to equation (1.24), the effect of propagation over a distance z is to
multiply each Fourier component by exp(iωn(ω)z/c)6:

E(z, t) =
∫ ∞

−∞
dω A(ω)e−iωt eiωn(ω)z/c (1.60)

or, using the Fourier inverse of (1.59),

E(z, t) =
∫ ∞

−∞
dω e−iωt eiωn(ω)z/c 1

2π

∫ ∞

−∞
dt ′ E(0, t ′)eiωt ′

=
∫ ∞

−∞
dt ′ G(z, t − t ′)E(0, t ′) (1.61)

where

G(z, τ ) = 1
2π

∫ ∞

−∞
dω e−iωτ eiωn(ω)z/c (1.62)

eiωn(ω)z/c =
∫ ∞

−∞
dτ G(z, τ )eiωτ . (1.63)

Equation (1.61) states that the field at z > 0 at time t is determined by the
field at z = 0 at times t ′. Since the field does not propagate instantaneously from
z = 0 to z > 0, G(z, t − t ′) must vanish for t − t ′ < T , where T (> 0) is some
finite time. Thus, G(z, τ ) = 0 for τ < T and, therefore,

eiωn(ω)z/c =
∫ ∞

T
dτ G(z, τ )eiωτ (1.64)

or

eiωn(ω)z/c = eiωT
∫ ∞

0
dt ′ G(z, t ′ + T )eiωt ′ . (1.65)

This is of the form (1.39) and we conclude, since z is arbitrary, that ωn(ω) is
analytic in the upper half of the complex ω plane. Then the previous subtraction
procedure leads to the dispersion relations (1.54) and (1.55).
6 If the field is incident from vacuum onto a medium of refractive index n(ω), we should include the
Fresnel transmission coefficient 2/[n(ω) + 1] in the integrand of (1.60). This modification is of no
consequence for the derivation of the dispersion relations.
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We close this section with a few remarks about the Kramers–Krönig
dispersion relations. Note first that the approximations (1.33) and (1.34) do not
satisfy the last two symmetry relations (1.56). However, they do satisfy the Hilbert
transform relations (1.54) and (1.55). They also illustrate the fact (figure 1.1) that
a peak in the function nI(ω) is accompanied by a rapid variation and a sign change
in nR(ω). Physically, this means that the strongest departures of the group velocity
from c are to be found in the vicinity of absorption lines (section 1.5).

Rayleigh scattering provides another illustrative example. Consider the
classical non-relativistic equation of motion for a bound electron in an applied
monochromatic field (see, for instance, Jackson [14] or reference [8]):

ẍ + ω2
0x − τ

...
x= e

m
E0e−iωt (1.66)

where τ = 2e2/3mc3 ∼ 6 × 10−24 s. The polarizability is

α(ω) = e2/m

ω2
0 − ω2 − iτω3

(1.67)

and the refractive index in the case of N such atoms per unit volume is given by

n2(ω) = n2
R − n2

I + 2inRnI = 1 + Ne2/mε0

ω2
0 − ω2 − iτω3

. (1.68)

Thus,

n2
R

∼= 1 + (Ne2/mε0)(ω
2
0 − ω2)

(ω2
0 − ω2)2 + τ 2ω6

(1.69)

and

nI ∼= Ne2τω3/2nRmε0

(ω2
0 − ω2)2 + τ 2ω6

∼= ω3

c3

(n2
R − 1)2

12πnR N
(1.70)

in the approximation |ω2
0 − ω2| . τω3. The intensity extinction coefficient due

to scattering is, therefore,7

as(ω) = 2ωnI(ω)/c = ω4

c4

(n2
R − 1)2

6π NnR
(1.71)

which is the well-known extinction coefficient due to Rayleigh scattering. It has
recently been checked experimentally [16].

What is interesting about this derivation of as(ω) is that the polarizability
(1.67) and the refractive index are not analytic in the upper half of the complex ω
plane. The ω3 in the denominator of (1.67) or, in other words, the third derivative
7 The ‘radiation reaction’ damping term in equation (1.66) accounts for the loss of energy due to
radiation by the bound electron driven by the applied field. The energy loss is, therefore, associated
with scattering rather than absorption of the applied field.
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16 In the Beginning

of x in equation (1.66) leads to a pole in the upper half-plane. And yet it is
precisely this ω3 dependence that gives rise, via (1.71), to the well-known ω4

dependence of Rayleigh scattering.
The model leading to equation (1.66) is well known to be acausal; but the

acausality occurs on such a short time scale that relativistic quantum effects must
be taken into account. In other words, the non-relativistic model equation (1.66),
even if it is regarded as a quantum-mechanical, Heisenberg operator equation, is
fundamentally flawed, though it leads in this example to correct results.

Consider equation (1.57) in the limit ω → ∞:

nR(ω) − 1 = − 2
πω2

∫ ∞

0
ω′nI(ω

′) dω′. (1.72)

In this limit, equation (1.28) gives

nR(ω) − 1 = − e2

2mε0ω2

∑

i

Ni
∑

j

fi j = − e2 N Z
2mε0ω2 (1.73)

where N = ∑
i Ni is the total density of atoms and we have used the Thomas–

Reiche–Kuhn sum rule,
∑

j fi j = Z , for Z -electron atoms (section 1.2). Thus,

∫ ∞

0
ω′nI(ω

′) dω′ = π N Ze2

4mε0
. (1.74)

Now exp(iωn(ω)z/c) = exp(iωnR(ω)z/c) exp(−ωnI(ω)z/c) means that the
intensity decreases as exp(−2ωnI(ω)z/c) = exp(−a(ω)z), where a(ω) is the
absorption coefficient. In terms of the absorption coefficient, the sum rule (1.74)
becomes ∫ ∞

0
a(ω) dω = π N Ze2

2mε0c
(1.75)

which is useful in the analysis of absorption spectra. Various other sum rules and
relationships can be obtained from the dispersion relations.

1.4 Signal velocity and Einstein causality

The arguments leading to the Hilbert transform relations in the preceding section
were based on causality in the sense that the ‘output’ of a linear and time-invariant
system cannot precede the ‘input’. The different requirement that no signal can be
transmitted with a velocity exceeding c is often referred to as Einstein causality.
Suppose an event at (x, t) were to cause an event at (x + 0x, t + 0t) via some
signal with velocity u. In some other reference frame with relative velocity v

(< c), the time interval between the two events is

0t ′ = 0t − (v/c2)0x
√

1 − v2/c2
= 0t (1 − uv/c2)

√
1 − v2/c2

. (1.76)

Copyright © 2005 IOP Publishing Ltd.



Group velocity 17

Then a superluminal signal velocity (u > c) would imply that there are velocities
v for which 0t and 0t ′ have opposite signs: the temporal order of ‘cause’ and
‘effect’ would be different for different observers. Special relativity and causality,
therefore, forbid superluminal signal velocities. But what, precisely, defines a
signal? We will address this question in the following chapters but for now let us
consider a velocity that often characterizes the propagation of an electromagnetic
pulse and is often—erroneously—assumed to be a signal velocity.

1.5 Group velocity

The concept of group velocity was evidently first introduced by William Rowan
Hamilton in 1839 [17]. John Scott Russell, in his paper reporting the first
observation of soliton water waves in 1844 [18], may also have been the first to
observe and identify the group velocity of a wave. In an article ‘On the Velocity
of Light’ in 1881, Lord Rayleigh clearly distinguished between the phase velocity
(V ) and the group velocity (U ) [19]:

If the crest of an ordinary water wave were observed to travel at the
rate of a foot per second, we should feel no hesitation in asserting that
this was the velocity of the wave; and I suppose that in the ordinary
language of undulationists the velocity of light means in the same
way the velocity with which an individual wave travels. It is evident,
however, that in the case of light, or even of sound, we have no means
of identifying a particular wave so as to determine its rate of progress.
What we really do in most cases is to impress some peculiarity, it may
be of intensity, or of wave-length, or of polarization, upon a part of
an otherwise continuous train of waves, and determine the velocity at
which this peculiarity travels. Thus in the experiments of Fizeau and
Cornu, as well as in those of Young and Forbes, the light is rendered
intermittent by the action of a toothed wheel; and the result is the
velocity of the group of waves, and not necessarily the velocity of
an individual wave . . . I have investigated the general relation between
the group-velocity U and the wave-velocity V . It appears that if k be
inversely proportional to the wave-length,

U = d(kV )

dk
(1.77)

and is identical with V only when V is independent of k, as has hitherto
been supposed to be the case for light in vacuum. If, however, as
Young and Forbes believe, V varies with k, then U and V are different.
The truth is however that these experiments tell us nothing in the first
instance about the value of V . They relate to U ; and if V is to be
deduced from them it must be by the aid of the above given relation.
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Consider two plane waves with the same polarization and amplitude but
differing slightly in frequency ω and wavenumber k. The sum of the two waves
is proportional to

S(z, t) = cos[(ω + 0ω)t − (k + 0k)z] + cos[(ω − 0ω)t − (k − 0k)z]

= 2 cos(ωt − kz) cos 0ω

(
t − 0k

0ω
z
)

. (1.78)

The factor cos(ωt − kz) is a carrier wave with phase velocity vp = ω/k. The
second cosine factor gives the wave modulation, or ‘envelope’. If 0ω and 0k
are small compared with ω and k, the envelope is slowly varying compared with
the carrier and propagates with the velocity 0ω/0k. If we add a group of waves
with a small spread in frequencies and wavenumbers around ω and k, we obtain
similarly a carrier wave with phase velocity ω/k and an envelope with group
velocity

vg = dω

dk
. (1.79)

This is equivalent to Rayleigh’s expression (1.77) when we set the phase velocity
V = ω/k in the latter. For the sake of completeness, we now carry out a derivation
of this expression for the group velocity.

Consider a plane-wave electric field

E(z, t) = (z, t) exp[−i(ωL t − kLz)] (1.80)

where kL = k(ωL). We are assuming a carrier wave with frequency and
wavenumber ωL and kL , respectively, and that there is a modulation function or
envelope that we denote by (z, t). We use this expression for E(z, t) in equation
(1.61) and differentiate once with respect to z to obtain

∂

∂z
= i

2π

∫ ∞

−∞
dt ′ (0, t ′)

∫ ∞

−∞
dω [k(ωL + ω) − kL]e−iω(t−t ′)ei[k(ωL+ω)−kL ]z .

(1.81)
The Taylor expansion

k(ωL + ω) = kL +
(

dk
dω

)

ωL

ω + 1
2

(
d2k
dω2

)

ωL

ω2 + . . . (1.82)

in equation (1.81) gives

∂

∂z
+

(
dk
dω

)

ωL

∂

∂ t
+ i

2

(
d2k
dω2

)

ωL

∂2

∂ t2 + · · · = 0. (1.83)

It often happens that (d2k/dω2)ωL ∂2 /∂ t2 and all the higher-derivative terms in
(1.83) are negligible compared with the first-derivative terms. If, furthermore,
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absorption at frequency ωL is sufficiently weak that (dk/dω)ωL may be taken to
be real, then

∂

∂z
+ 1

vg

∂

∂ t
= 0 (1.84)

where the group velocity

vg =
(

dω

dk

)

ωL

= c
(nR + ω dnR/dω)ωL

(1.85)

nR again being the real part of the refractive index. In this approximation, the
pulse envelope propagates without change of shape or amplitude at the group
velocity:

E(z, t) = (0, t − z/vg)e−i(ωL t−kL z). (1.86)

In a spectral region of ‘normal dispersion’, (dnR/dω)ωL > 0, the group
velocity is less than the phase velocity c/nR. Because vg can exceed c in a region
of anomalous dispersion, (dnR/dω)ωL < 0 (section 1.2), and because vg was
generally thought to be the velocity of energy propagation, vg > c was, in the
past, thought to be in conflict with the special theory of relativity. This conflict
was resolved in large part when Sommerfeld and Brillouin proved that the signal
velocity cannot exceed c even in a region of anomalous dispersion.

The work of Sommerfeld and Brillouin is discussed in the following
chapter. The point we wish to emphasize here is that the group velocity of an
electromagnetic pulse is not, in general, the velocity of a signal. Unfortunately,
the confusion surrounding the meaning of group velocity did not end with the
work of Sommerfeld and Brillouin, as one might have expected. Even today, and
even in deservedly well-known textbooks and monographs, one finds assertions
that the concept of group velocity loses physical significance when the group
velocity exceeds c or has one of the other interesting values discussed in the
next chapter. The claim is that, contrary to the approximate result (1.86), a pulse
will become highly distorted in shape as a consequence of the strong dispersion
implied by vg > c. This is a sensible but incorrect conclusion in general, as we
shall see in chapter 2. Worse, it is often implied that there would be a conflict
with special relativity if the group velocity were larger than c. This is wrong
because, to repeat, group velocity is not, in general, a signal velocity: Sommerfeld
and Brillouin had no problems with the possibility that the group velocity of
a pulse could exceed c, although there was no direct experimental evidence in
their time that this actually happened. The notion of group velocity represents
an approximation to the actual state of affairs in which signals cannot propagate
faster than c.

Experimental studies of ‘superluminal’ group velocities are discussed in
chapter 2. These studies received considerable ‘popular press’ while some
physicists felt that the experiments added nothing new to our understanding of
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group velocity, signals, or relativity8. In any case, it seems fair to say that
this work has at least helped to correct some long-standing misconceptions,
among them being that (a) a group velocity greater than c would violate special
relativity and (b) group velocity ceases to have physical significance in the case
of anomalous dispersion, when it can exceed c. We quote from two of the classic
texts to which we have alluded9:

There is no cause for alarm that our ideas of special relativity are
violated [when the group velocity exceeds c]; group velocity is just not
a useful concept here. A large value of dn/dω is equivalent to a rapid
variation of ω as a function of k. Consequently the approximations
[made in deriving (1.86)] are no longer valid. The behaviour of the
pulse is much more involved [14].

. . . in regions of anomalous dispersion the group velocity may exceed
the velocity of light or become negative, and in such cases it has no
longer any appreciable physical significance [9].

Note that a large value of dn/dω does not necessarily imply that the
approximations leading to (1.86) break down. In particular, it is clear from
figure 1.1 that dn/dω can be large while d2n/dω2 is small, so that the principal
approximation made in deriving (1.86), namely the approximation that second
and higher derivatives of n(ω) can be neglected, does not necessarily break down
in a region of anomalous dispersion.

To cite an example where group velocity is implicitly assumed to be a signal
velocity, consider the propagation of x-rays in glass, in which case we can take
ω . ω0 and ignore the damping term in equation (1.28):

n(ω) ∼= 1 − e2

2mε0ω2

∑

i

∑

j

Ni fi j = 1 − a/ω2 (1.87)

where a = (e2/2mε0)
∑

i Ni
∑

j fi j = Ne2/2mε0. Then the phase velocity
c/n(ω) > c while the group velocity

vg = c
1 + a/ω2 (1.88)

is less than c. Thus, it has been concluded that ‘although the phases can travel
faster than the speed of light, the modulation signals travel slower, and that is the
resolution of the apparent paradox!’ [20]. But in a different medium, where a

8 Unfortunately this work was also belittled by some who somehow thought that the experiments
involved nothing more subtle than a phase velocity greater than c! See Physics Today 54 14 (February
2001).
9 The pertinent discussion is corrected in the third edition of reference [14] as well as in a later
printing of [9].
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could be negative and the group velocity greater than c, the same argument would
lead to a serious ‘paradox’ indeed!

Even in the more specialized literature, one finds statements that the standard
expression for the group velocity loses its physical significance in a region of
anomalous dispersion:

the . . . standard expression for the group velocity fails to describe the
motion of the peak of the pulse envelope in a region wherein there
is either significant absorption or amplification, and hence, no real
physical significance may be associated with it in such regions [21].

The relation
vpvg = c2 (1.89)

between the group velocity vg and the phase velocity vp appears frequently in the
theory of waveguides [22]. It is not a general result. It requires that

ω

k
dω

dk
= c2 (1.90)

or ω2 − k2c2 = constant.

1.6 Maxwell’s equations and special relativity: an example

It has been said that Maxwell was lucky: his equations for the electromagnetic
field turned out to be Lorentz invariant, gauge invariant, and correct quantum
mechanically when interpreted as Heisenberg operator equations of motion. It
is primarily the first property of Maxwell’s equations that is of interest in this
chapter.

Einstein was aware of the Michelson–Morley experiment before he
published his epiphanic paper on special relativity in 1905 [23] but the phenomena
that most influenced him were the aberration of starlight and the propagation of
light in moving media. Fresnel had predicted that there would be no change in
the apparent position of a star if a telescope were filled with water and this was
confirmed experimentally by Airy (1871). According to Fresnel, a material with
refractive index n and velocity v causes light to propagate with the additional
velocity f v with respect to the stationary ether, where the ‘drag coefficient’
f = 1 − 1/n2. Fizeau’s experimental results (1851) on the velocity of light in
flowing water were consistent with a drag coefficient f = 0.48, in fair agreement
with the theoretical value for n = 1.33.

Einstein showed that Fizeau’s result, though seeming to support the ether
drag hypothesis, could easily be explained by the theory of special relativity (SR),
wherein ‘the propagation of light always takes place with the same velocity [c/n]
with respect to the liquid, whether the latter is in motion with reference to other
bodies or not. The velocity of light relative to the liquid and the velocity of the
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latter relative to the tube are thus known, and we require the velocity [u] of light
relative to the tube’ [24]. Thus, according to the SR velocity addition formula,

u = c/n + v

1 + v(c/n)/c2
∼= c

n
+

(
1 − 1

n2

)
v = c

n
+ f v (v & c). (1.91)

It is interesting to describe the Fizeau experiment using the wave equation
and Lorentz transformations. Consider the (scalar) wave equation

∂2 E
∂z′2 − n2

c2

∂2 E
∂ t ′2

= 0 (1.92)

for the electric field E in a non-dispersive medium with refractive index n at rest
in a reference frame K ′10. Make a Lorentz transformation

z = γ (z′ + vt ′) t = γ (t ′ + vz′/c2) [γ = (1 − v2/c2)−1/2] (1.93)

to a frame moving in the z direction with velocity −v with respect to K ′. Then

∂

∂z′ = γ

(
∂

∂z
+ v

c2

∂

∂ t

)
∂

∂ t ′
= γ

(
∂

∂ t
+ v

∂

∂z

)
(1.94)

and (1.92) becomes, for v & c,

∂2 E
∂z2 − 2(n2 − 1)v

c2

∂2 E
∂x∂ t

− n2

c2

∂2 E
∂ t2 = 0 (1.95)

for the field E(z, t) in a medium moving with velocity vẑ. This is easily
generalized: for a medium moving with velocity v (v & c),

∇2 E − 2
c2 (n2 − 1)v · ∇

(
∂ E
∂ t

)
− n2

c2

∂2 E
∂ t2 = 0. (1.96)

For a monochromatic field, E(r, t) = (r)e−iωt ,

∇2 + 2iω
c

(n2 − 1)
v

c
· ∇ + n2ω2

c2 = 0. (1.97)

If ′ is a solution of equation (1.97) with v = 0, then a solution with v /= 0
is

(r) = ′(r) exp
[

− i
ω

c2 (n2 − 1)

∫ s(r)
v · ds′

]
(1.98)

where the line integral is over any path such that (a) the end point s(r) = r and
(b) ∇ × v = 0. The proof that this is so is easily established using the fact that, if
∇ × v = 0, v can be written as the gradient of a scalar function.
10 The effect of dispersion on the drag coefficient is discussed in [27].
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Figure 1.4. Schematic illustration of Fizeau’s experiment.

Consider now the simple version of the Fizeau experiment indicated in figure
1.4. The field in the observation plane is the sum of two fields, one having
passed through the tube with water flowing in the direction of propagation and
the other with the water flowing against the direction of propagation. For either
path, v /= 0 and ∇ × v = 0, so that equation (1.98) applies. The intensity at r in
the observation plane has an interference part proportional to the real part of

′
1(r)

′∗
2 (r) exp

[
i
ω

c2 (n2 − 1)

(∫ s(r)

path 1
v · ds′ −

∫ s(r)

path 2
v · ds′

)]

= ′
1(r)

′∗
2 (r) exp

[
i
ω

c2 (n2 − 1)

∫
! · n dS

]

= ′
1(r)

′∗
2 (r)eiφ (1.99)

where ! = ∇ × v is the vorticity of the flow and the integral is over the surface
bounded by the two paths to the observation plane in figure 1.4.

The vorticity in the idealized Fizeau experiment indicated in figure 1.4 is just
2v&, where & is the length of the tubes through which the light passes. Thus,

φ = ω

c2 (n2 − 1)(2v&) (1.100)

or

δ = φ

2π
= 2&

λc
n2 f v (1.101)

where f = 1 − n−2 is the Fresnel drag coefficient. This fringe displacement
is identical to that obtained using the formulas u = c/n ± f v [equation (1.91)]
for the light velocities in the two tubes of flowing water and defining the fringe
displacment in terms of the difference in time 0t it takes for light to propagate
through the tubes with oppositely flowing water:

0t = &

c/n − f v
− &

c/n + f v
∼= 2&

c2 n2 f v (1.102)
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and δ = c0t/λ.

The Fizeau experiment as just described has a formal similarity to the
Aharonov–Bohm effect in quantum mechanics [25–27]. The velocity v and
the vorticity ! = ∇ × v in our description of the Fizeau experiment are
analogous to the vector potential A and the magnetic field B, respectively,
in the Aharonov–Bohm effect. The essence of the Aharonov–Bohm effect is
that electron interference can be observed even though the electrons pass only
through regions with B = 0: what matters is

∫
B · n dS. In the Fizeau

experiment, similarly, the fringe displacement is determined by
∫

! · n dS and
there are interference fringes even though the light only (ideally) passes through
regions with ! = 0. Of course, the Aharonov–Bohm effect is more subtle for
several reasons [27] but the analogy between it and the Fizeau experiment seems
interesting nevertheless.

The fact that Maxwell’s equations are Lorentz invariant hardly needs
mention here and the transformation properties of the fields are treated
exhaustively in many books such as Jackson [14]. There is probably no end to
interesting analyses involving Maxwell’s equations and Lorentz transformations
but it is beyond our scope here to delve further into this topic. The most important
thing for our purposes is the fact that the speed of light c in vacuum is the same in
all reference frames and that no signal can be transmitted with a velocity greater
than this (section 1.4).

1.7 Group velocity can be very small—or zero

It is well known that the group velocity of a pulse can be very small. Experiments
in self-induced transparency, for instance, have demonstrated group velocities
thousands of times smaller than the speed of light in vacuum. This is a nonlinear
effect associated with the absorption of the leading part of a pulse in a resonant
medium, followed by the amplification, by stimulated emission, of its back part.

The definition (1.85) implies that, if n + ω dn/dω is large, the group
velocity can be very small even in a medium that responds linearly to the field.
Experiments in which ω dn/dω is large and positive in the vicinity of a narrow
resonance have demonstrated that the group velocity of a pulse can not only
be reduced to values on the order of metres per second but that it can even be
zero; in other words, a pulse can be stopped. In fact, the group velocity can be
controlled to such an extent that the pulse can be regenerated by increasing the
group velocity from zero to some finite value. These phenomena, which could
conceivably have applications in ‘quantum information’ storage or in optical
communications, are discussed in chapters 5 and 6.
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1.8 The refractive index can be negative

Variations of the refractive index that produce unusual group velocities are not
the only aspect of dispersion that will be of interest. A recent development is
the growing recognition that the refractive index itself can be negative: nothing
presented in this chapter suggests this possibility (or precludes it).

Veselago [28,29] was evidently the first to consider seriously the possibility,
and some consequences, of having a negative refractive index. In particular,
he showed that a negative electric permittivity ε and a negative magnetic
permeability µ implies a negative refractive index. The possibility that the
refractive index (or phase velocity) could be negative was briefly touched upon
by Mandelstam in connection with Snell’s law [30, 31].

Associated with negative refractive indices are highly unusual propagation
effects that could conceivably have important applications in the imaging of
electromagnetic sources, and one of our goals is to provide a basic introduction
(chapters 7 and 8) to negative refraction and its possible applications.

One of the consequences of a negative index of refraction is that the electric
field vector E, the magnetic field vector H , and the wavevector k of a plane
waveform a left-handed triad. For this reason, a medium with negative refractive
index is called left-handed or doubly negative (because ε and µ are both negative)
or simply a metamaterial. I prefer to call the light left-handed, because calling
the medium left-handed might be misconstrued as saying something about its
chirality. In any event, there are no known naturally occurring doubly negative
materials and it is only recently that such materials have been purposefully
fabricated.

1.9 The remainder of this book

The first six chapters of this book will be concerned with dispersive media that
are ‘unusual’ in that the group velocity of light pulses can be greater than c,
infinite, negative, much less than c, or zero. All of these situations have been
realized experimentally. It will be of interest to understand in some detail why
‘superluminal’ pulses are consistent with Einstein causality, to see how these
unusual propagation effects are described by quantum theory, and to understand
some of the basic physics underlying situations where light pulses can be slowed
down to velocities far less than c or even brought to a complete stop. In the last
two chapters, we will focus on left-handed light, how it can be realized, and what
some of its applications might be. The purpose of this chapter has been to set the
stage by reviewing some of the most basic historical, conceptual, and theoretical
aspects of electromagnetic propagation and dispersion.
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Chapter 2

Fast light

In this chapter, we will be concerned primarily with group velocities that exceed
c or are even infinite or negative. Such group velocities have been observed in
various experiments. Consideration of such abnormal group velocities forces us
to consider more carefully what is meant by a ‘signal’.

We begin by proving that a front—a sudden, discontinuous turn-on of a
field—propagates with the speed of light c in vacuum. Then we review some
general theorems about where ‘abnormal’ group velocities should appear as the
frequency of a field is varied across an absorption (or gain) spectrum. The
possibility that a Gaussian pulse can have a group velocity that is greater than
c or negative is considered, followed by a description of various experiments in
which superluminal, negative, and infinite group velocities have been observed.
It is argued that these experimental observations are not in conflict with Einstein
causality, the statement that no signal can propagate faster than c. We explain
why there is nothing surprising in observations of ‘superluminal effects’ in the
propagation of Bessel beams and why what is propagating superluminally is not
a signal. Next we consider the velocity with which electromagnetic energy is
transported when the group velocity is superluminal. Finally, we list the various
propagation velocities introduced in the chapter.

2.1 Front velocity

The fact that the group velocity could exceed c in a spectral region of anomalous
dispersion was cause for great concern in the early days of special relativity.
Brillouin’s frequently cited monograph [32] describes in detail his work with
Sommerfeld. The problem and its solution are summarized in the preface:

[group velocity] seems to have been first discovered by Lord Rayleigh,
who characterized this velocity in sound waves. It is now known to
apply to practically all kinds of waves. Let us use the vocabulary
of radio engineers and consider a carrier wave with a superimposed
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modulation. The phase velocity yields the motion of elementary
wavelets in the carrier, while the group velocity gives the propagation
of the modulation. Lord Rayleigh considered that the group velocity
corresponds to the velocity of energy or signals.

This however raised difficulty with the theory of relativity which states
that no velocity can be higher than c, the velocity of light in vacuum.
Group velocity, as originally defined, became larger than c or even
negative within an absorption band. Such a contradiction had to be
resolved and was extensively discussed in many meetings about 1910.
Sommerfeld stated the problem correctly and proved that no signal
velocity could exceed c. I discussed the problem in great detail and
gave a complete answer.

Brillouin went on to mention three different velocities that would be
introduced in the book: ‘the group velocity of Lord Rayleigh’, ‘the signal velocity
of Sommerfeld’, and ‘the velocity of energy transfer’ and noted that ‘These three
velocities are identical for nonabsorbing media, but they differ considerably in an
absorption band’1. Later in the book (p 15) he remarked that ‘a galaxy of eminent
scientists, from Voigt to Einstein, attached great importance to these fundamental
definitions’.

We have already alluded to the fact that group velocity is not, in general a
signal velocity. But just what is meant by a signal? According to Sommerfeld
[32, p 18],

In order to be able to say something about propagation, we must . . . have
a limited wave motion: nothing until a certain moment in time, then, for
instance, a series of regular sine waves, which stop after a certain time
or which continue indefinitely. Such a wave motion will be called a
signal.

According to this definition, a signal involves new information or an element of
‘surprise’ that could not have been predicted from the wave motion at an earlier
time. Thus, a wave motion of the form

f (t) = θ(t) sin ωt (2.1)

where θ(t) is the Heaviside step function, can be called a signal. It must then
be the case that the wave discontinuity or front at t = 0 propagates with a
velocity ≤ c in any medium; otherwise we would have a signal, or information,
propagating with a velocity greater than c, in violation of special relativity.

A proof of this important result can be given using equations (1.61) and
(1.62):

E(z, t) =
∫ ∞

−∞
dt ′ G(z, t − t ′)E(0, t ′) (2.2)

1 The italics in these quotations are Brillouin’s. As mentioned in section 1.5, group velocity was
evidently ‘first discovered’ by Hamilton, not Rayleigh.
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G(z, τ ) = 1
2π

∫ ∞

−∞
dω e−iωτ eiωn(ω)z/c. (2.3)

As remarked in section 1.3, it is reasonable to assume, as did Sommerfeld and
Brillouin, that n(ω) → 1 as ω → ∞. With this assumption, it follows that the
integrand in (2.3) is exp iω(z/c − τ ) for large ω. Therefore, for z > cτ , the
integral can be replaced by a contour integral involving a large semicircle in the
upper half of the complex ω plane as in figure 1.3. Now we recall from section 1.3
that causality—in the sense that there can be no polarization before there is an
electric field to induce the polarization—requires that the refractive index n(ω)

be analytic in the upper half of the complex ω plane. Therefore, for z > cτ , the
integral (2.3) vanishes:

G(z, τ ) = 0 for τ < z/c. (2.4)

It follows from (2.2) that if the incident field E(0, t) = 0 for all t < 0, then
the field E(z, t) = 0 for all t < z/c. In other words, we have the desired result
that a wavefront such as (2.1) cannot propagate with a velocity greater than c. In
fact, the front velocity is exactly c.

This result is so important that we should remind ourselves of some of the
assumptions made in deriving it. First, as noted in section 1.3, we have ignored
the Fresnel transmission coefficient for the boundary at z = 0 in the case when
there is a change in refractive index at z = 0. This simplification does not affect
our conclusion because the transmission coefficient is analytic in the upper half
of the complex ω plane. This follows from the analyticity of n(ω), which is
another assumption—or actually a theorem based on the causal relation between
the electric field and the induced electric polarization—used in obtaining (2.4).

Second, we have assumed that n(ω) → 1 as ω → ∞. As already noted, this
is a physically reasonable assumption: the particles that scatter radiation from
the incident wave have finite mass and inertia and cannot respond sufficiently
rapidly to (infinitely) high-frequency waves to have any effect on them and are,
therefore, not ‘seen’ at all by these waves. Similarly, the particles cannot respond
instantaneously to a wavefront. In a classical picture, they can scatter radiation
only after they are displaced from their initial positions by the wave. Their
accelerated motion after this displacement causes them to radiate and the fields
from all the particles can then add coherently to (a) ‘extinguish’ the incident field
and (b) replace it by a field having the phase velocity c/n(ω) (section 1.2). This,
incidentally, raises a more subtle assumption in the derivation of (2.4) [32, p 38]:

Concerning the validity of dispersion theory, we wish to mention one
restriction which underlies all calculations of dispersion: that there
must be very many particles within a wavelength. Only under this
condition can we reckon on a continuous distribution of displacement
vectors . . . and disregard the molecular discontinuities. This condition
is, as is well known, satisfied for wavelengths as short as ultraviolet, but
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not for very high (x-ray) frequencies. In so far as we must include these
frequencies in our analytical method, we are applying an extrapolation
of the formulas of dispersion theory in a realm where their validity is
not physically justified.

Brillouin does not discuss this point any further. The assumption that there
are very many particles within a wavelength is made in formulating the Ewald–
Oseen extinction theorem in the case of continuous media [10]. To deal rigorously
and generally with the very high frequencies, one must go beyond the dipole
approximation and also treat multiple scattering effects explicitly.

The continuous-medium assumption, as well as the assumption that n(∞) =
1 for any medium, seems innocuous enough, although the latter has not been
rigorously established in general in quantum electrodynamics.

To summarize: Sommerfeld and Brillouin introduced the notion of a signal
as a ‘limited wave motion: nothing until a certain moment in time, then, for
instance, a series of regular sine waves, which stop after a certain time or which
continue indefinitely’. A signal so defined has a sharp front, or step-function
behaviour, at some time t = 0. The velocity at which this front propagates is
exactly c in any medium. Thus, the velocity of a signal cannot exceed c no matter
how n(ω) varies with ω and, in particular, no matter what the group velocity is.

2.2 Superluminal group velocity

As noted in section 1.5, the definition

vg = dω

dk
= c

nR + ω dnR/dω
(2.5)

implies that the group velocity vg can be ‘superluminal’, or greater than c. It
can also be infinite or negative. As discussed in the following sections, such
‘abnormal’ values for the group velocity have been observed.

Equation (2.5) shows that the group velocity differs most significantly from
the phase velocity vp = c/nR when |(ω/nR) dnR/dω| is large. In a region of
anomalous dispersion, dnR/dω < 0 and vg > vp. In the case of a homogeneously
broadened absorbing medium, where the real part of the refractive index is given
approximately by equation (1.33), vg > vp near the centre of the absorption line.
At the centre of the absorption line (ω = ω0), for instance,

vg = c
1 − Kω0/γ 2 . (2.6)

Our discussion thus far has implicitly assumed an absorbing medium in
which the number density N is approximately the density of atoms in the ground
state. More generally, N should be replaced by the difference of lower-state and
upper-state populations for the transition of frequency ω0 (section 1.2). Thus, in
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the case of an amplifying medium, where this difference is negative, K is negative
and we have normal dispersion (and vg < c) close to the resonance frequency ω0.
The curve of nR(ω) − 1 versus ω in this case is simply reversed in sign compared
to the curve in figure 1.1, so that the dispersion becomes anomalous when the
field frequency is tuned away from ω0. Thus, depending on the detuning ω − ω0
in the vicinity of a resonance, the group velocity can exceed c in amplifiers as
well as absorbers.

More generally, Bolda et al [33] have shown that, for any dispersive
dielectric medium, there must be a frequency for which the group velocity is
‘abnormal’, i.e. larger than c, infinite, or negative. Consider the difference

"t (ω) = z
vg

− z
c

(2.7)

between the time it takes for the peak of a pulse with group velocity vg to travel
a distance z and the time it takes to travel the same distance in vacuum. For
abnormal group velocities, this ‘group delay’ is negative:

"t (ω) =
(

z
vg

− z
c

)
= d

dω

(
ω

z
c
[nR(ω) − 1]

)
≡ d

dω
φ(ω) < 0. (2.8)

Bolda et al show, from the Kramers–Krönig relation between nR(ω) and nI(ω),
that "t (ω) must be negative for at least one frequency ω.

Consider first the high-frequency limit of φ(ω). According to equation
(1.73), nR(ω) → 1 − ω2

p/2ω2 in this limit, where the plasma frequency ωp is
defined by ω2

p = N Ze2/mε0. Thus

φ(ω) = − z
c

ω2
p

2ω
(ω → ∞) (2.9)

and is always negative in this high-frequency limit. In the zero-frequency limit,
we have, from (1.57),

nR(0) = 1 + 2
π

P
∫ ∞

0

nI(ω)

ω
dω (2.10)

and

"t (0) = z
c
[nR(0) − 1] = 2z

πc
P

∫ ∞

0

nI(ω)

ω
dω. (2.11)

The conclusion that "t (ω) must be negative for at least one ω, i.e. that there
must be at least one frequency for which the group velocity is greater than c,
infinite, or negative, now follows from (2.9)–(2.11) and continuity. Consider the
case of an absorbing medium, for which nI(ω) > 0 and, therefore, "t (0) > 0
[equation (2.11)]. Since φ(0) = 0 and "t (ω) = (d/dω)φ(ω), there must be some
small frequency ω at which φ(ω) > 0, whereas at sufficiently high frequencies
φ(ω) < 0. Now φ(ω), like nR(ω), must be continuous and differentiable and
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so, at some intermediate frequency, !t (ω) = (d/dω)φ(ω) must be negative,
or in other words the group velocity at some frequency in an absorber must be
‘abnormal’. In the case of an amplifying medium such that nI(ω) < 0 and the
integral in equation (2.11) is negative, the group velocity is seen to be abnormal
at zero frequency in particular [34].

The variation of nR(ω) with ω shown in figure 1.1 for the important case of
a homogeneously broadened absorber indicates that abnormal group velocities in
absorbers are most likely to be observed at exactly those frequencies for which
the absorption is strongest. Bolda et al [33] show more generally that, in any
absorber, the group velocity is, in fact, abnormal at the frequency at which the
absorption is greatest, whereas vg < c at the frequency at which the absorption is
weakest. To establish this result, they consider the complex phase difference

F(ω) = z
c
ω[n(ω) − 1]. (2.12)

For real ω, the real part of F(ω) reduces to φ(ω), whereas

Im[F(ω)] = z
c
ωnI(ω) = zκ(ω) (2.13)

where κ(ω) is the field attentuation coefficient. F(ω) is analytic in the upper half
of the complex ω plane, and so gives

dF(ω)

dω
= 1

2π i

∮
F(ω′)

(ω′ − ω)2 dω′ (2.14)

where the path of integration is that of figure 1.3 except that the principal part of
the integral is taken at ω′ = ω. n(ω) → 1 as ω → ∞ implies that the integral
over the large semicircle vanishes, so that

dF(ω)

dω
= 1

2π i
P

∫ ∞

−∞
dω′ F(ω′)

(ω′ − ω)2 . (2.15)

This can be rewritten as [33]

dF(ω)

dω
= lim

ε→0

1
2π i

P
∫ ∞

−∞
dω′ F(ω′) − F(ω) − (ω′ − ω − iε) dF(ω)/dω

(ω′ − ω − iε)2

+ F(ω)
1

2π i
P

∫ ∞

−∞

dω′

(ω′ − ω − iε)2

+ dF(ω)

dω

1
2π i

P
∫ ∞

−∞

dω′

(ω′ − ω − iε)
(2.16)

where the second and third terms have been added and subtracted. Thus,
performing the simple integrals in these terms, one obtains

dF(ω)

dω
= 1

π i
P

∫ ∞

−∞
dω′ F(ω′) − F(ω) − (ω′ − ω) dF(ω)/dω

(ω′ − ω)2 (2.17)
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or, taking the real parts of both sides,

!t (ω) = dφ(ω)

dω
= z

π
P

∫ ∞

−∞
dω′ κ(ω′) − κ(ω) − (ω′ − ω) dκ(ω)/dω

(ω′ − ω)2 . (2.18)

Equation (2.18) implies that, at an absorption maximum (dκ(ω)/dω = 0),
!t (ω) < 0, i.e. the group velocity is abnormal at the frequency at which the
absorption is strongest. Similarly, !t (ω) > 0 and, therefore, vg < c at the
frequency at which the absorption is weakest. In the case of an amplifying
medium, with field amplification coefficient −κ(ω), vg < c at the frequency
at which the gain is greatest. These results generalize the conclusions reached
on the basis of a homogeneously broadened absorption (or amplification) line
characterized by a Lorentzian lineshape.

2.3 Theoretical considerations of superluminal group velocity

The literature relating to the theoretical possibility of superluminal group velocity
is large and diverse and certainly did not end with the work of Sommerfeld
and Brillouin. The recent interest in the subject stems from experimental
work made possible with lasers and we will accordingly describe some of the
relevant theoretical work in laser physics that was done before the most recent
experiments.

Basov et al [35] concluded from their analysis of pulse propagation in an
amplifying medium that ‘the velocity of pulse propagation may prove to be much
higher than the speed of light in vacuum’. It is now well known that the group
velocity of a pulse in an amplifier can exceed c due to a pulse reshaping in which
the front part of the pulse leaves less gain available for the back part, resulting in
an advancement of the peak of the pulse. Whether Basov et al actually intended
to imply that a signal could be propagated superluminally is not clear but, in
any case, their conclusion was criticized by Icsevgi and Lamb [36], who argued
that Basov et al in their analysis assumed ‘an unphysical input pulse extending
to infinity at both ends’. The measurement of pulse velocities greater than c does
not contradict special relativity because ‘an experimental apparatus can only trace
the bulk of the pulse’ which does not constitute a signal. Thus, Icsevgi and Lamb
implied, in agreement with Sommerfeld and Brillouin, that a signal must involve
a discontinuous wavefront and that the (group) velocity characterizing the ‘bulk
of the pulse’ is not the velocity at which a signal can be propagated.

An early and important contribution for later developments was made by
Garrett and McCumber [37] in 1970. They showed that superluminal group
velocities can appear when a Gaussian pulse propagates in an absorbing medium,
provided that the pulse bandwidth is much smaller than the width of the absorption
line and the medium is sufficiently short. Under these circumstances, ‘the pulse
remains substantially Gaussian and unchanged in width for many exponential
absorption depths, and . . . the locus of instants of maximum amplitude follows the
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classical expression for the group velocity, even if this is greater than the velocity
of light, or negative’. This results from a pulse reshaping and advancement
process in which the back part of the pulse is more strongly absorbed than the
front part.

Consider a Gaussian pulse

E(0, t) = E0e−iωt e−t2/2τ 2
(2.19)

incident on a dielectric of refractive index n(ω) occupying the half-space z ≥ 0.
The spectrum of this field is

A(ω) = 1
2π

∫ ∞

−∞
dt E(0, t)eiωt = E0

τ√
2π

e− 1
2 (ω−ω)2τ 2

(2.20)

and, according to equation (1.60), the field at z in the medium is

E(z, t) = E0
τ√
2π

∫ ∞

−∞
dω e−iωt eiωn(ω)z/ce− 1

2 (ω−ω)2τ 2
. (2.21)

This is the starting point of the analysis of Garrett and McCumber [37]. They
assume a refractive index appropriate to a homogeneously broadened medium
with absorption frequency ω0 and linewidth γ :

n(ω) ∼= n∞ − ω0ωp

ω(ω − ω0 + iγ )
(|ωp/γ | & n∞) (2.22)

where n∞ is the refractive index far from the absorption line.
Assuming that the spectral width of the pulse is much less than the absorption

linewidth, i.e. γ τ ' 1, the principal contribution to the integral in (2.21) is from
frequencies ω ≈ ω. In this case, ωn(ω) in the integral can be approximated by
the first three terms of its Taylor series:

ωn(ω) ∼= ωn(ω) + (ω − ω)

[
d(nω)

dω

]

ω

+ 1
2
(ω − ω)2

[
d2(nω)

dω2

]

ω

. (2.23)

(The fact that higher derivatives of ωn(ω) = k(ω)c can be ignored for sufficiently
long pulses can also be seen from equation (1.83).) Then

E(z, t) ∼= E0
τ√
2π

e−iω(t−n(ω)z/c)
∫ ∞

−∞
du e−iu(t−αz/c)e− 1

2 u2(τ 2−iβz/c)

= E0√
1 − iβz/cτ 2

e−iω(t−n(ω)z/c) exp

[
−(t − αz/c)2

2τ 2(1 − iβz/cτ 2)

]

(2.24)

where

α ≡
[

d(nω)

dω

]

ω

β ≡
[

d2(nω)

dω2

]

ω

. (2.25)
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It has been assumed here that

Re
(

1 − iβz
cτ 2

)
> 0 (2.26)

so that the integral in (2.24) converges. Assuming, furthermore, that (1 −
iβz/cτ 2) ∼ 1, we have

E(z, t) ∼= E0e−iω(t−n(ω)z/c) exp

[
−(t − αz/c)2

2τ 2(1 − iβz/cτ 2)

]

. (2.27)

After some algebra, we obtain, in this approximation,

|E(z, t)|2 ∼= |E0|2e−X (z,t) (2.28)

where

X (z, t) = 2ωnI(ω)
z
c

− α2
I

z2

c2 + τ 2 + βIz/c

(τ 2 + βIz/c)2 + β2
Rz2/c2

×
( [

t −
(

αR
z
c

−
1
2αIβRz2/c2

τ 2 + βIz/c

)]2

+ αIβRz3/c3

τ 2 + βIz/c

[
αR −

1
4αIβRz/c

τ 2 + βIz/c

])
. (2.29)

This expression simplifies to

X (z, t) = 2ω0ωp

γ

z
c

+ (t − z/vg)
2/τ 2

1 − 2ω0ωpz/γ 3cτ 2 (2.30)

vg = c
n∞ − ω0ωp/γ 2 (2.31)

when the central frequency of the pulse coincides with the resonance frequency of
the medium (ω = ω0). The expression (2.31) for the group velocity at line centre
is a slight generalization of (2.6).

The first term on the right-hand side of (2.30) gives just the attenuation factor
for light of frequency ω0 that has propagated a distance z into the medium. (For
the case of an amplifier, where ωp < 0, it gives the amplification factor.) The
second term shows that, at a given z, the peak intensity of the pulse occurs at the
time t = z/vg, i.e. the pulse propagates with the group velocity vg. In fact, if

z % γ 3cτ 2/2ω0ωp (2.32)

the pulse propagates at the group velocity and without change of shape aside from
the overall attenuation described by the first term on the right-hand side of (2.30):

|E(z, t)|2 ∼= |E0|2e−aze−(t−z/vg)
2/τ 2 = e−az|E(0, t − z/vg)|2 (2.33)
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where a = 2ω0ωp/γ c. The condition (2.32) is consistent with the assumption
that (1 − iβz/cτ 2) ∼ 1 and that (2.26) is satisfied. In terms of the absorption
length %abs = 1/a, we can write (2.32) as

z/%abs # γ 2τ 2 (2.34)

which states that the propagation distance measured in units of the absorption
length is small compared with (&νabs/&νL)2, where &νabs and &νL are the
spectral widths of the absorption line and the light pulse, respectively.

Note that, for an absorber (ωp > 0), the group velocity (2.31) can be
superluminal or negative. Garrett and McCumber [37] described this as

quite a paradoxical result . . . not only can the pulse appear to travel (in
the sense of tracing the locus of instants of maximum amplitude) faster
than c: it can even appear to travel backwards . . . . The nervous reader
may perhaps feel reassured if we point out (i) that, in any time snapshot,
the amplitude decreases monotonically with z in a lossy medium, and
(ii) that the Poynting vector is always directed toward increasing z.
Nevertheless, it is still true that the output-pulse peak can sometimes
emerge from the far side of a parallel-sided slab of medium before the
peak of the input pulse enters the near side. This output pulse will be
greatly attenuated (or greatly amplified, as the case may be) but still of
substantially the same Gaussian shape as the input pulse.

In fact, equation (2.31) shows that the group velocity can be infinite as well as
superluminal or negative. An infinite group velocity means that the peak of the
pulse emerging at the end of the medium occurs at the same instant as the peak of
the pulse at the entrance to the medium. A negative group velocity means that the
peak of the emerging pulse occurs at an earlier time than the peak of the pulse at
the entrance to the medium (figure 2.1).

Garrett and McCumber went on to study numerically the propagation of an
initially Gaussian pulse over distances sufficiently large that the approximations
leading to (2.27) break down and the pulse no longer propagates at the group
velocity without significant distortion. They noted, however, that these numerical
simulations were of limited relevance to experiments, since, for γ τ $ 1,
‘significant distortion will generally not occur until the overall gain or attenuation
is enormously large’.

Crisp [38] interpreted the possibility of a superluminal group velocity in
terms of an ‘asymmetric absorption of energy from the light pulse. More energy
is absorbed from the trailing half of the pulse than from the front half, causing the
centre of gravity of the pulse to move at a velocity greater than the phase velocity
of light.’ Such an interpretation appears frequently in discussions of superluminal
group velocity and can be based as follows on an approximate relation between
the polarization P of the medium and the electric field

E(z, t) = (z, t)e−iωt =
∫ ∞

−∞
d& ˜(z,&)e−i(ω+&)t . (2.35)
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(a)

(b)

Figure 2.1. Intensity profiles at a fixed time when a light pulse is incident on a medium
of length L such that the group velocity is (a) infinite and (b) negative. For schematic
purposes, the input and output pulses are shown with the same normalized amplitude.

The polarization is

P(z, t) =
∫ ∞

−∞
d! χ(ω + !) ˜(z,!)e−i(ω+!)t (2.36)

where χ(ω) is the susceptibility. If the spectrum of the field is peaked sufficiently
sharply at the central frequency ω, i.e. if the envelope (z, t) varies sufficiently
slowly on a time scale ∼ 1/ω, we can make the approximation

χ(ω + !) ∼= χ(ω) + !χ ′(ω) (2.37)

in (2.36):

P(z, t) ∼= e−iωt
∫ ∞

−∞
d! [χ(ω) + !χ ′(ω)] ˜(z,!)e−i!t

= χ(ω)E(z, t) + iχ ′(ω)e−iωt ∂ (z, t)
∂ t

. (2.38)

Based on a similar expression derived from the theory of resonant pulse
propagation in a medium with absorption linewidth much greater than the spectral
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width of the pulse, Crisp [38] uses the fact that the sign of ∂ /∂ t is positive during
the front half of the pulse and negative during the trailing half to conclude that
more energy is absorbed from the trailing half of the pulse than the front half.

Chiao et al [39] have suggested that superluminal group velocities could be
observed in optical amplifiers whose relaxation times are long compared with the
pulse duration. Recalling equation (1.31) for the refractive index near an atomic
resonance frequency (ω21 = ω0, f12 = f ), we have, for the real part of the index,

nR(ω) ∼= 1 + e2 f
4mε0ω0

N1 − N2

ω0 − ω
(2.39)

if the field is sufficiently far from resonance that (ω0 −ω)2 # γ 2. For an inverted
(amplifying) medium with w = (N2 − N1)/N > 0, where N is the number
density of atoms,

nR(ω) ∼= 1 − Nwe2 f
4mε0ω0

1
ω0 − ω

(2.40)

and

k = nR(ω)
ω

c
= ω

c

[

1 − Nwe2 f
4mε0ω0

1
ω0 − ω

]

= ω

c

[

1 −
ω2

pw/4ω0

ω0 − ω

]

(2.41)

k − k0 = 1
c
(ω − ω0) − ω

c

ω2
pw/4ω0

ω0 − ω
(2.42)

(k − k0)c ∼= (ω − ω0) −
ω2

pw/4

ω0 − ω
. (2.43)

Here the plasma frequency ωp is defined by

ω2
p = Ne2 f

mε0
= 2Nd2ω0

ε0
(2.44)

where d is the electric dipole transition matrix element. Defining K = k − k0 and
% = ω − ω0, we write (2.43) as

%2 − K c% + 1
4wω2

p = 0 (2.45)

which is the ‘tachyonic’ dispersion relation derived by different methods by Chiao
et al.

This dispersion relation is discussed in detail in [39]. Here we simply note
that equation (2.43) implies the group velocity

vg = dω

dk
= c

(

1 −
ω2

pw/4

(ω0 − ω)2

)−1

(2.46)

so that, in the case of an amplifier (w > 0), an off-resonant pulse can propagate
with a group velocity vg > c.
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Chiao et al argue that a superluminal group velocity might be observed
even at the single-photon level. They refer to a single-photon wave packet
propagating with superluminal group velocity as an ‘optical tachyon’. To avoid
spontaneous emission noise, they require that the radiative lifetime of the atoms
be large compared with the propagation time through the amplifier, which, in turn,
should be large compared with the pulse duration. In order to avoid cooperative
spontaneous emission, or superfluorescence (SF), the time delay before the peak
of any SF pulse should be larger than all these other times. We discuss the
possibility of an optical tachyon in more detail in chapter 4. We now turn
our attention to some observations of superluminal and other abnormal group
velocities.

2.4 Demonstrations of superluminal group velocity

Experimental demonstrations of superluminal group velocity were reported
shortly after the paper by Garrett and McCumber. In the intervening years, various
other reports of superluminal group velocity have appeared. In this section, we
briefly describe the earliest experiments as well as more recent experiments that
have stimulated other work to be discussed later.

2.4.1 Repetition frequency of mode-locked laser pulses

Faxvog et al [40] found evidence of a superluminal group velocity in the
propagation of mode-locked pulse trains in a resonant absorber. A mode-locked
laser producing a train of pulses with a repetition frequency c/2L, where L is
the length of the laser cavity, will have a pulse repetition frequency of vg/2L
if an absorber in which the group velocity is vg is put in the cavity. Using a
mode-locked He–Ne laser cavity containing an Ne absorption cell, an increase in
the pulse repetition frequency when the absorption and dispersion were increased
by increasing the current in the absorption cell was observed and found to be
consistent with a group velocity exceeding c by about three parts in 104 2.

2.4.2 Pulse propagation in linear absorbers

Chu and Wong [41] confirmed the predictions of Garrett and McCumber by
showing that pulses could propagate in an absorber with group velocities that are
greater than c, negative, or infinite, and could do so without substantial distortion
of their initial shape. In these experiments, pulses from a tunable dye laser were
divided by a beam splitter, so that one part of a pulse passed through an absorber
while the other propagated essentially in vacuum. Measured cross correlation
2 We quote the value stated by Faxvog et al. The cavity length L in the experiments was about
118 cm. For a particular cell current and laser power, an increase in the pulse repetition frequency of
about 5 kHz was observed. This implies (vg − c)/2L = 5×103 s−1 or vg/c−1 ∼= 4×10−5. Faxvog
et al, however, state that vg/c − 1 ∼= 3 × 10−4.
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signals of the recombined pulses gave the delay time of the pulse that passed
through the absorber, based on the fact that the pulse velocity for far off-resonance
pulses is equal to the phase velocity c/n0 = 8.57 × 109 cm s−1. The laser
frequency was varied across the absorption line to determine the delay time and,
therefore, the group velocity as a function of frequency. The intensities were far
below the saturation level, so that the pulse propagation was very close to linear,
as assumed in the analysis of Garrett and McCumber, and the condition (2.34)
was also well satisfied.

Figure 2.2 shows the measured pulse delay time and group velocity as the
laser frequency was varied across the Lorentzian absorption curve. Chu and Wong
remarked: ‘Although the delay as a function of laser frequency is a smooth, well
behaved function, the pulse velocity goes through some rather counter-intuitive
singularities’ implied by the formula vg(ω) = c/[n(ω) + ω dn(ω)/dω]. In fact,
the data show that the delay time of the pulse passing through the absorption layer
goes through zero as the laser frequency is varied. In other words, the peak of the
pulse emerging from the absorber occurs at the same time as the peak of the pulse
incident on the absorber: the group velocity vg(ω) = ∞ in this case. The data
also show, in agreement with the theory (the full curve in figure 2.2), that the
group velocity can be negative (figure 2.1). In either case, the group velocity is
obviously superluminal in that the time delay in traversing the absorber is less than
the time delay for traversing the same distance in vacuum. The cross-correlation
data indicated that the pulse emerging from the absorber had nearly the same
shape as the incident pulse, albeit with some pulse compression.

2.4.3 Photon tunnelling experiments

More recent interest in abnormal group velocities is due in considerable part to
the experimental and theoretical work of Chiao’s group [42–44]. This work,
inter alia, answered some important and long-standing questions about tunnelling
times. It is also noteworthy that these were essentially single-photon experiments.

MacColl [45] in 1932 considered the transmission and reflection of a wave
packet incident on the potential barrier defined by V (x) = 0 for x < 0 and x > a
and V (x) = V0 > 0 for 0 < x < a. It is important to note that he chose an
initial wave packet that did not vanish but was very small for x > a: this initial
wave packet, as opposed to one that identically vanishes for x > a, was chosen
so that none of the energy components E making up the incident packet exceed
V0. He found that ‘the transmitted packet appears at the point x = a at about
the time at which the incident packet reaches the point x = 0, so that there is no
appreciable delay in the transmission of the packet through the barrier’. Defining
the tunnelling time in terms of how long it takes for the peak of the wave packet
at x = a to occur relative to the peak of the incident packet at x = 0, one would
conclude that the tunnelling is superluminal.

It is well known that evanescent waves in optics are analogous to
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Figure 2.2. Data of Chu and Wong for the pulse delay and group velocity (circles) for 48-ps
pulses passing through an absorption layer of length !" = 76 µm. The broken curve
is the measured absorption lineshape and the full curve is the theoretical group velocity
obtained from the absorption lineshape, using the Kramers–Krönig relation to numerically
determine the real part of the refractive index, nR(ω), and from that the group velocity.
Note that the length of the absorption layer is less than six times the absorption length
1/α(ω) at the peak of the absorption curve. From [41], with permission.

tunnelling wavefunctions in wave mechanics3. The Helmholtz equation ∇2 +
(n2ω2/c2) = 0 for the amplitude of a scalar monochromatic wave has the same
form as the time-independent Schrödinger equation, ∇2ψ + (2m/ 2)(E − V )ψ ,
making the occurrence of an evanescent optical wave (imaginary n) analogous to
particle tunnelling (E < V ).

Chiao et al performed experiments in which the central frequency of a single-
photon wave packet was that for minimum transmission through a multilayered
dielectric consisting of alternating layers of high and low n. The exponentially
decaying, evanescent behaviour of the transmitted wave is analogous to quantum
tunnelling—in fact, the situation is analogous to the Krönig–Penney model for the
propagation of electrons in a crystal. Near the frequency of minimal transmission
in the experiments, the group velocity approximation is quite accurate and,
therefore, the tunnelling wave packet should suffer little distortion, although the
transmission is, of course, very small.

3 This analogy is discussed in some detail by Zhu et al [46].
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Figure 2.3. Schematic illustration of the experiment by Chiao et al. From [43], with
permission.

Spontaneous parametric down-conversion was used to simultaneously
generate pairs of photons at a wavelength of 702 nm (figure 2.3). Two pinholes
used to select the photon pairs determine, by their size and the phase-matching
condition, the bandwidth of the down-converted light. [See, for example, [47] for
a simplified treatment.] In the experiments, the resulting photon wave packets
had a bandwidth of ∼ 6 nm and a temporal width ∼ 20 fs. Using coincidence
photon-counting and an application of a Hong–Ou–Mandel interferometer [48] to
measure the femtosecond-scale delays between photons that traversed the tunnel
barrier and their twins that passed through air, Chiao et al were able to determine
the photon tunnelling times. Figure 2.4 shows photon coincidence rate data
versus the path delays with and without the tunnel barrier in place. The negative
delay found with the barrier means that a single photon tends to pass through the
barrier faster than it would propagate through an equal distance in air. Effective
tunnelling velocities of about 1.7c were inferred from the measured photon
coincidence rates. Thus, these experiments demonstrated that the tunnelling
process can indeed be ‘superluminal’, as predicted by MacColl [45].

2.4.4 Gain-doublet experiments

In the experiments of Chiao et al, the tunnelling probability is very small; and,
similarly, in the experiments of Chu and Wong [41], there was considerable
attenuation of the pulses propagating in the absorbing medium. The observation
of distortionless pulses propagating with superluminal group velocity and
relatively small change in amplitude was reported by Wang et al [49]. In these
experiments, a gain doublet is employed, such that in the spectral region between
two gain peaks there is strong anomalous dispersion but little gain (or absorption)
[50], as shown in figure 2.5. In such a spectral region, the group velocity can
differ significantly from c while the pulse suffers little change in either amplitude
or shape.
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Figure 2.4. Data of Chiao et al for the coincidence rate versus the path difference of
twin photons produced by spontaneous parametric down-conversion, one photon passing
through a tunnel barrier and the other through a column of air of the same length as the
barrier. From [44], with permission.

Figure 2.5. Gain and refractive index in the vicinity of a gain doublet. From [49], with
permission.

Wang et al used a 6-cm cesium cell coated with paraffin, which allows
atoms to maintain their spin polarization when they collide with the walls. They
prepared the cesium atoms in the three-state system shown in figure 2.6 by optical
pumping with polarized light. Two right-hand circularly polarized, continuous-
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Figure 2.6. Approximate level diagram of cesium in the experiments of Wang et al.
From [49], with permission.

wave Raman pump beams, shifted in frequency by 2.7 MHz, are incident on the
cell; and their electric field amplitudes E1 and E2 are indicated in figure 2.6.
The state |2〉 in figure 2.6 is the final state of the Raman transition, while the
state |0〉 serves as the primary intermediate state. A continuous-wave probe field
(Ep in figure 2.6) was varied in frequency with an acousto-optical modulator and
used to measure the gain and refractive index as a function of frequency: results
conforming accurately to the curves in figure 2.5 were obtained. The predicted
group velocity was vg = −c/330. Then a weak, nearly Gaussian probe pulse
(3.7 µs FWHM) was used to measure transmitted pulse intensity profiles and
propagation times. It was verified that the peak of the transmitted pulse appears
at the end of the cell before the peak of the incident pulse appears at the entrance
to the cell, consistent with the prediction of a negative group velocity. The
transmitted peak occurred 62 ns before the incident peak. Thus, the transmitted
peak goes about 3 × 108 m s−1 × 62 ns = 18 m from the cell before the incident
peak even arrives. Since the time for light travelling at c to traverse the 6-cm
cell is about 0.2 ns, the 62-ns advance implies a group velocity in the cell of
about −c/310, consistent with the measured refractive index and the formula
vg = c/[nR + ω dn/dω] for the group velocity.

Note that the 62-ns advance of the pulse peak is a small fraction of the
pulsewidth. A similar remark applies to the data of Chu and Wong [41] and Chiao
et al [44] (figure 2.4). The pulse advance is small compared with the pulsewidth
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in all ‘superluminal’ light experiments reported thus far. We return to this point
in chapter 4.

2.4.5 Other experiments and viewpoints

A series of elegant experiments by Nimtz and others (see [51] and references
therein) has demonstrated evanescent-wave superluminal group velocities in
microwave waveguides. To see how this can come about, consider the TE01
mode of a waveguide of width a in which the refractive index is n except for
a rectangular air gap (n ≈ 1) [52]. The dispersion relation is then ω2

c + K 2
z c2 =

ω2/c2 in the gap and ω2
c + k2

z c2 = n2ω2/c2 elsewhere, with ωc = πc/a. Thus,
ω can be chosen such that Kz is imaginary while kz is real. In this case, the
propagation in the waveguide is analogous to tunnelling and the evanescent wave
can cross the gap with a superluminal group velocity.

Nimtz et al have observed superluminal group velocities in microwave
waveguides. In particular, in one experiment they encoded Mozart’s 40th
Symphony on a microwave and reported that this ‘signal’ was transmitted at 4.7c.
As discussed later, the superluminal group velocity of the transmitted waveform
does not violate Einstein causality because it does not represent a superluminal
transmission of information. In particular, as noted by Nimtz et al, there is
no superluminal transmission here of a sharp wave front. Whether an actual
‘signal’ is transmitted becomes partly a question of semantics but, according to
the definition of a signal as a carrier of new information, there is no superluminal
signal propagation in these experiments and, therefore, no violation of Einstein
causality. As discussed in the following section and, as noted by Chiao and
Steinberg [43], ‘[the] appearance of a waveform faster than c is in itself nothing
surprising’.

Suppose there is destructive interference between a wave ψ(t) and a retarded
and attenuated portion ηψ(t − %t). The superposition of these waves in the first-
order approximation is ψ(t) − ηψ(t − %t) ≈ (1 − η)ψ(t + χ%t), where χ =
η/(1 − η) > 0: the destructive interference, therefore, provides an extrapolation
of ψ from t to t + χ%t . This simple observation is relevant to the tunnelling
experiments: Chiao and Steinberg [43] discuss the fact that ‘the interference at
work in tunnelling has the effect of advancing the incident waveform due to
the first derivative term of Taylor’s theorem’, and that this advancement occurs
‘without any need for information about the later behavior of the incident field’.
Chiao and Steinberg [43] observe that

[T]he time advance being discussed is well under 1 ns in Nimtz’s
experiments. An acoustic waveform, on the other hand, has a useful
bandwidth on the order of 20 kHz, which is to say that no significant
deviation from a low-order Taylor expansion occurs in less than about
50 µs. To predict where the wave form would be 50 µs in advance
requires little more than a good eye; to predict it 1 ns in advance hardly
even requires a steady hand.
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Nimtz et al [51, 53] have argued that their evanescent fields do not satisfy
Einstein causality because, as a practical matter, a ‘signal’ is limited in its
frequency spread or, in other words, a real-world signal cannot have a sharp
turn-on or turn-off. Obviously the disagreement over whether a signal can or
cannot propagate faster than c hinges on the definition of a signal. We adhere
to what seems to be the prevailing view—which is not always made explicit
in discussions of Einstein causality—that a signal is something that conveys
information and, as such, must involve a discontinuity in a waveform or one of
its derivatives. A signal defined as such does not violate Einstein causality. This
is the viewpoint advocated many years ago by Icsevgi and Lamb [36] in their
criticism of the work of Basov et al [35]. However, the arguments of Nimtz et al
raise the valid point that the term ‘signal’ needs to be better defined, especially
when, as discussed in chapter 4, imperfect detectors and quantum effects are
considered.

2.5 No violation of Einstein causality

Chu and Wong [41] remarked that the subject of propagation of pulses in
dispersive media ‘continues to be plagued by widely held misconceptions’.
Misconceptions persist even after a century since Sommerfeld and Brillouin [32]
proved that the group velocity could exceed c without being in violation of
special relativity. This may be due, in part, to the fact that Brillouin’s work [32]
involves a lot of technical detail and notation that differs considerably from what
is conventional today. Moreover, Sommerfeld and Brillouin could cite no relevant
experimental literature on abnormal group velocities. About the closest they get to
what might actually happen in ‘the real world’ when light propagates in a highly
dispersive medium is to mention a remark by W Wien that the group velocity
could exceed c. Their motivation centred, according to Sommerfeld, on the fact
that ‘this apparent contradiction to the theory of relativity had to be resolved’. In
addition, it is often the case, depending on the assumed values of parameters like
the pulsewidth and the absorption linewidth, that a pulse is greatly distorted in a
dispersive medium [21]. For whatever reasons, it has generally been asserted,
as discussed in section 1.5, that the concept of group velocity loses meaning
when vg is greater than c or negative. The experiments just described, however,
demonstrate that pulses can, in fact, propagate with abnormal group velocities
and without significant distortion.

Garrett and McCumber [37] observed that the Gaussian pulse (2.19) ‘really
has no true beginning or end. The t < 0 envelope maximum seen by an observer
at z > 0 is not a direct reflection of the maximum of the input-pulse envelope, but
arises from the action of the dispersive medium on the weak early components
of that envelope.’ Crisp [38], as already mentioned, attributed the possibility of a
superluminal group velocity in an absorber to a reshaping of the pulse such that
the leading part is less attenuated than the trailing part. Experiment shows that this
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pulse reshaping can, remarkably, leave the pulse shape and duration essentially
unchanged.

It has sometimes been argued that the derivation of the result (2.33) does
not require that the pulse ‘has no true beginning or end’. However, if this were
strictly correct, it would mean, in particular, that a sharply defined wavefront
could propagate faster than c, contradicting the Sommerfeld–Brillouin proof that
the front velocity is c. The approximation (2.23), from which (2.33) follows,
requires that the pulse spectrum not be too large, whereas the spectrum of a (step-
function) front includes infinitely large frequencies.

The trivial result (1.78) for the sum of two equal-amplitude monochromatic
waves with slightly differing frequency and wavelength already suggests that the
pulse envelope, or modulation, can propagate with a velocity that is greater than
c or negative. Similarly, the superposition of many monochromatic waves with
frequencies and wavelengths lying in narrow bands implies the possibility of such
abnormal modulation (group) velocity: to get a group velocity vg > c, all one
has to imagine is a dispersive medium in which the phase velocity vp increases
sufficiently rapidly with frequency, since

vg = c
n + ω dn/dω

= vp

1 − (ω/vp) dvp/dω
. (2.47)

This can be illustrated by a movie in which monochromatic waves in a narrow
band are added and the higher-frequency components are given larger phase
velocities than the lower-frequency components: the modulation will be seen
under appropriate circumstances to propagate faster than the phase velocity of
the carrier wave. Such demonstrations, of course, only illustrate what the formula
for the group velocity is already telling us. The same is true of interpretations of
abnormal group velocities in terms of interference and pulse reshaping: since the
problem is linear, what else could be happening other than interference causing
the centroid of the pulse to move with a velocity, abnormal or otherwise, that
differs from the phase velocity of the carrier? While such interpretations might be
helpful conceptually, they do not quite seem to help very much to explain why
none of the intriguing experimental results discussed in the preceding section
violates the principle of Einstein causality—the principle that no signal can
propagate faster than c.

For that purpose, it is useful to cast the group-velocity approximation in
a different form [54]. Assume E(0, t) = A(t) exp(−iωL t), where A(t) varies
sufficiently slowly on times scales ∼ ω−1

L that we can replace k(ω) = n(ω)ω/c
in equations (2.2) and (2.3) by k(ωL)+(dk/dωL)ωL (ω−ωL) = kL +(ω−ωL)/vg.
Then, in this approximation,

E(z, t) = 1
2π

e−i(ωL t−kL z)
∫ ∞

−∞
dt ′ A(t ′)

∫ ∞

−∞
dω e−i(ω−ωL )(t−t ′)ei(ω−ωL )z/vg

= e−i(ωL t−kL z) A(t − z/vg) (2.48)
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which, of course, is equivalent to (1.86). But now let us express the integration
over ω and t ′ in (2.48) as

∫ ∞

−∞
dt ′ A(t ′)

∫ ∞

−∞
dω exp−i(ω−ωL )(t−t ′−z[v−1

g −c−1]) exp(i(ω−ωL )z/c)

=
∫ ∞

−∞
dt ′ A(t ′)

∞∑

n=0

(iz)n

n! (v−1
g − c−1)n

×
∫ ∞

−∞
dω (ω − ωL)n exp−i(ω−ωL )(t−t ′−z/c)

=
∫ ∞

−∞
dt ′ A(t ′)

∞∑

n=0

zn

n! (v
−1
g − c−1)n ∂n

∂ t ′n

∫ ∞

−∞
dω expi(ω−ωL )(t ′−t+z/c)

= 2π

∫ ∞

−∞
dt ′ A(t ′)

∞∑

n=0

zn

n! (v
−1
g − c−1)n ∂n

∂ t ′n
δ(t ′ − t + z/c)

= 2π exp(c−1−v−1
g )z∂/∂t A(t − z/c) (2.49)

so that

E(z, t) = e−i(ωL t−kL z)e[c−1−v−1
g ]z∂/∂t A(t − z/c)

= e−i(ωL t−kL z) A(t − z/vg) (2.50)

which is equivalent to the result derived by Diener [54].
Equation (2.50) states that, in the group-velocity approximation in which

second and higher derivatives of the refractive index with respect to frequency are
neglected, propagation over a distance z corresponds to an analytic continuation
over the time z/c − z/vg of the vacuum-propagated pulse envelope A(t − z/c).
In other words, a superluminal group velocity does not imply a superluminal
propagation of new information, since there is no information in A(t − z/vg)
that is not already contained in A(t − z/c).

Evidently, new information is propagated only if A(t −z/c) does not have an
analytic continuation. In this case, the second equality in (2.50) is invalid, while
the first equality holds up to a time at which A(t−z/c) or one of its derivatives has
a discontinuity. Thereafter, the pulse evolution becomes much more complicated
than a simple undistorted propagation at the superluminal group velocity. The
point of singularity behaves like a Sommerfeld–Brillouin front, which propagates
at c. That is, a true signal evidently requires non-analyticity and cannot transmit
information at a velocity > c.

The case of an analytic (e.g. Gaussian) waveform propagating without
distortion at a superluminal group velocity is, nevertheless, remarkable when
one considers that (1) points at time t on the transmitted pulse are causally
determined by points at t < z/c on the incident pulse and yet (2) the transmitted
pulse advances at the velocity vg > c. This means, as indicated in figure 2.7,
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Figure 2.7. Incident (a) and transmitted (b) pulses for a propagation length L and group
velocity vg > c. The shaded portion of (b) is completely determined by the shaded portion
of (a).

that if (z/c − z/vg) is much larger than the pulse duration, the peak of the
transmitted signal is reconstructed entirely from a small tail of the incident pulse:
if (z/c−z/vg) is large enough, nearly the entire transmitted pulse is reconstructed
by analytic continuation of a tiny portion of the incident pulse!

Note that the peak of the transmitted pulse is not causally connected to the
peak of the incident pulse, so that, in particular, the observation that the pulse peak
moves superluminally does not contradict Einstein causality. A simple analogy
would be the motion of a spot of light made by shining a rotating flashlight onto
a distant wall. The spot can, in principle, move superluminally but there is no
violation of causality because the spot at one instant is not the source of the spot
at a later instant. In this same sense, the experimental observations of pulse peaks
propagating faster than c do not contradict Einstein causality.

The recent experimental observations of superluminal group velocities
involve a linear response of the medium to the field and the exchange of energy
between the medium and the front and back parts of the pulse, leading to the
pulse advancement, can be interpreted using classical spectral arguments [55], as
already mentioned.

Linearity also makes it easy to perform a quantum-mechanical calculation
using a simple model in which an absorbing dielectric is described as a collection
of identical two-level atoms and the source of light is a single excited atom
outside the dielectric. It is shown in section 3.3 that, if the source atom of
transition frequency ω0 is suddenly excited at time t = 0, then the probability
of detecting a photon at a point inside the dielectric and at a distance z from the
source atom is zero before the time z/c. This is the analogue of the classical
result that a sharp wavefront cannot propagate faster than c. However, if the
probability P(t) that the source atom is excited varies smoothly in time, then
the photon-counting rate R(t) at an ideal detector located at z is proportional to
exp(−2ω0nI(ω0)z/c)P(t − z/vg), where nI is again the imaginary part of the
refractive index. Thus, if vg > c, the peak probability of producing a ‘click’ at
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the detector can occur earlier than is possible when there is no medium between
the detector and the source atom. This is analogous to what has been observed in
the optical tunnelling experiments of Chiao et al.

In section 2.1, we reviewed the Sommerfeld–Brillouin proof that a sharp
wavefront, one that jumps discontinuously from zero to a finite value, cannot
propagate faster than c. We noted that the front velocity is determined by the
infinite-frequency response of the propagation medium. (The front velocity is
c/nR(∞) = c.) We also noted that Sommerfeld and Brillouin [32] defined
a signal as a train of oscillations that starts from zero at some instant and
that, acccording to this definition, no signal can propagate faster than c, the
front velocity. From the discussion following equation (2.50), one concludes
more generally that the propagation of new information—a signal—requires a
discontinuity in a waveform or one of its derivatives [43, 54]. The discontinuity
involves infinite-frequency components and, therefore, propagates at c. Chiao and
Steinberg [43] define an idealized signal as ‘the complete set of all the points of
nonanalyticity {t0, t1, t2, . . .}, together with the values of the input function fin(t)
in a small but finite interval of time inside the domain of analyticity immediately
following these points’.

The signal velocity of an optical pulse is sometimes defined as the velocity of
propagation of the half-the-peak-intensity point on the leading part of the pulse.
Such a ‘signal’ velocity can exceed c but, as we have seen, it is not really a signal
velocity because it does not necessarily convey information that is not already
contained in the leading edge of the pulse. Moreover, as noted by Brillouin [32],

[this] definition of the signal velocity is somewhat arbitrary . . . The
signal does not arrive suddenly; there is a quick but still continuous
transition from the very weak intensity of the [precursors] to that
corresponding to the signal. A detector set to detect an intensity equal
to 1

4 the final intensity will detect the arrival of the signal in agreement
with the above arbitrary definition; if the detector is more or less
sensitive, then it will detect the arrival of the signal a little earlier or
later.

Regarding superluminal tunnelling, it should be noted that MacColl’s
assumption for the initial wave packet (section 2.4.3) means there is no sharp
front and no signal in the sense of Sommerfeld and Brillouin. That is, there is no
violation of Einstein causality implied by MacColl’s zero delay, even though the
peak of the wave packet appears to cross the barrier superluminally. The velocity
of the peak of the wave packet for the particle is analogous to the group velocity
of an electromagnetic pulse.

As discussed in chapters 3 and 4, the concept of a signal must, in general,
be extended beyond the completely classical considerations of this chapter to
include quantum effects. There are situations where quantum effects appear to
‘protect’ special relativity against the possibility of superluminal communication
of information.
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2.6 Bessel beams

The faster-than-c effects described thus far arise from the dispersion of light in a
material medium. We now describe some work in which ‘superluminal’ effects
derive solely from the nature of the propagating field. More specifically, we will
describe some work on the propagation of so-called Bessel beams [56, 57].

Let us first summarize a few salient features of Bessel beams. Consider
a scalar wave of frequency ω propagating in the z direction and having the
azimuthally symmetric form

E(z, t) = (ρ)e−i(ωt−kz z) ρ =
√

x2 + y2. (2.51)

Such a wave is ‘diffractionless’ in that the intensity (∝ | (ρ)|2) is independent of
the propagation distance z. The wave equation ∇2 E − c−2∂2 E/∂ t2 = 0 implies

d2

dρ2 + 1
ρ

d
dρ

+ (k2 − k2
z ) = 0 (k = ω/c) (2.52)

which has the solution

(ρ) = J0(kρρ) (k2 = k2
z + k2

ρ) (2.53)

where J0 is the zeroth-order Bessel function. Writing kρ = k sin θ and kz =
k cos θ , and using the integral representation of J0, we have

E(z, t) = J0(kρ sin θ)e−i(ωt−kz cos θ)

= 1
2π

∫ 2π

0
dφ e−i(ωt−kz cos θ)ei(kx sin θ cos φ+ky sin θ sin φ)

= 1
2π

∫ 2π

0
dφ e−i(ωt−q·r) (2.54)

where the wavevector q = k(x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ) intersects the
z-axis at angle θ . Thus, a (zeroth order) Bessel beam of frequency ω comprises all
possible plane waves with wavevectors of magnitude |q| = ω/c making an angle
θ to the z-axis. It follows that a Bessel beam can be produced by illuminating a
narrow annulus lying in the focal plane of a lens [56, 57].

The phase velocity of the wave (2.54) is vp = c/ cos θ . The group velocity
along the z direction is vg = ∂ω/∂kz = ckz/k = c cos θ . Some authors [58, 59]
state that the group velocity is c/ cos θ . The argument for this is evidently that
vg = dω/dkz = (dω/dk)(dk/dkz) = c/ cos θ , i.e. that kz = k cos θ with cos θ a
constant parameter. The definition of group velocity, however, presumes a wave
packet, in which case one cannot assume such a fixed relation between k and kz .

The fact that the plane-wave components of the Bessel beam intersect the
z-axis at the angle θ means that the point of contact with the z-axis of all of
these waves (or, more precisely, their planes of constant phase) move along the
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z-axis with the velocity c/ cos θ . The z-axis, therefore, appears to ‘light up’
superluminally. As noted by Saari and Reivelt [58], however, ‘[T]his speed is
superluminal in a similar way as one gets a faster-than-light movement of a bright
stripe on a screen when a plane wave light pulse is falling at the angle θ onto the
screen plane.’ In other words, the ‘superluminal’ propagation along z is merely a
geometrical effect, analogous to the old ‘scissors paradox’ in which the point of
contact of the two blades could move faster than c while the ends of the blades
move with velocity less than c. The points of contact are not causally connected
nor are points of contact along the z-axis causally connected in the case of the
Bessel beam. There is certainly no violation of Einstein causality, although it has
been claimed [59] that the Bessel beam ‘superluminality’ calls this fundamental
principle into question. This claim has been challenged on both theoretical and
experimental grounds [60, 61].

In order to propagate a signal from, say, (0, 0, 0) to (0, 0, z), information
would first have to be sent from (0, 0, 0) to points in the z = 0 plane at a
distance ρ = z tan θ away; and this distance gives the location in the z = 0
plane of the conical surface on which lie the wavevectors of the plane-wave
components that propagate to (0, 0, z) to produce the Bessel beam at (0, 0, z).
The information must then propagate over the distance z/ cos θ from these points
to (0, 0, z). The time it takes for the information to be propagated from (0, 0, 0)
to (0, 0, z), assuming that the information can be sent at velocity c, is then
t = (z tan θ + z/ cos θ)/c. Thus, the velocity with which information can be
propagated from (0, 0, 0) to (0, 0, z) is z/t = c/(tan θ + sec θ) ≤ c.

2.7 Propagation of energy

As remarked earlier, the work of Sommerfeld and Brillouin and others was
motivated in part by the association of group velocity with the velocity at which
electromagnetic energy propagates. The fact that the group velocity can exceed
c in a region of anomalous dispersion led them to more careful considerations of
the meaning of group and signal velocities.

Let us begin by considering the cycle-averaged electromagnetic energy
density uω in a dielectric medium for which absorption (or amplification) at
frequency ω is negligible [62]. Poynting’s theorem states that ∇ · S + ∂u/∂ t = 0
in the absence of any currents, where S = E × H and

∂u
∂ t

= E · ∂ D
∂ t

+ H · ∂ B
∂ t

. (2.55)

For a narrow band of frequencies about a frequency ω, within which absorption
is negligible, we write

E(r, t) = Eω(r, t)e−iωt =
∫ ∞

−∞
d% eω(r,%)e−i(ω+%)t (2.56)
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where Eω is slowly varying in time compared with exp(−iωt) and, as usual, the
real part of the complex expression for the field is implicit. Thus,

D(r, t) =
∫ ∞

−∞
d" ε(ω + ")eω(r,")e−i(ω+")t

∼=
∫ ∞

−∞
d"

[
ε(ω) + "

dε

dω

]
eω(r,")e−i(ω+")t

∼= ε(ω)E(r, t) + i
dε

dω
e−iωt ∂ Eω

∂ t
(2.57)

∂ D
∂ t

∼= ε
∂ E
∂ t

+ ω
dε

dω

∂ Eω

∂ t
e−iωt

=
[
ε
∂ Eω

∂ t
− iωε Eω + ω

dε

dω

∂ Eω

∂ t

]
e−iωt

=
[

d
dω

(εω)
∂ Eω

∂ t
− iωε Eω

]
e−iωt (2.58)

where we use the assumption that only a narrow band of frequencies is significant.
Thus,

E · ∂ D
∂ t

∼= 1
4

d
dω

(εω)
∂

∂ t
|Eω|2. (2.59)

A similar calculation for H · ∂ B/∂ t then yields, from (2.55) [62],

uω = 1
4

[
d

dω
(εω)|Eω|2 + d

dω
(µω)|Hω|2

]
(2.60)

for the field energy density at frequency ω.
Using |Hω|2 = (ε/µ)|Eω|2 for plane waves, we obtain

uω = 1
2µ

ε0µ0
d

dω
(nω)|Eω|2 = n

2µcvg
|Eω|2 (n2 = εµ/ε0µ0). (2.61)

Similarly, the cycle-averaged Poynting vector at frequency ω has magnitude

|Sω| = n
2µc

|Eω|2 = vguω. (2.62)

Defining the electromagnetic energy propagation velocity vE as the magnitude of
the Poynting vector divided by the energy density [32], we have

vE ≡ |Sω|/uω = vg. (2.63)

Thus, the energy transport velocity defined in this manner can, like the group
velocity, be superluminal or negative, in apparent contradiction with special
relativity. Obviously, this is a consequence of the appearance of the group velocity
in the energy density (2.61). However, it should be borne in mind that (2.61)
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assumes that absorption is negligible and that vg is, in fact, positive and less than
c at the frequency at which absorption is weakest (section 2.2). To conclude from
(2.61) that the energy density and energy velocity can be greater than c or negative
is to assume that the formula is applicable to frequencies outside its domain of
validity.

In considering the velocity of energy transport, it is also imperative to
recognize the fact that part of the energy density is stored for a finite time in
the propagation medium [63, 64]. In this connection, it is instructive to consider
a simple model that is essentially that of Loudon [63] for a dielectric medium
consisting of Lorentzian electron oscillators coupled to the electric field according
to the equation of motion

m(r̈ + ! ṙ + ω2
0 r) = eE. (2.64)

The polarization density in this model is P = Ner , where N is the number
density of oscillators (‘atoms’) and this implies, for an electric field of frequency
ω, the dielectric constant

κ(ω) = ε(ω)/ε0 = 1 +
ω2

p

ω2
0 − ω2 − i!ω

(2.65)

where ω2
p = Ne2/mε0. Writing κ1/2 = n = nR + inI, we have

n2
R − n2

I = 1 +
ω2

p(ω
2
0 − ω2)

(ω2
0 − ω2)2 + !2ω2

(2.66)

2nRnI =
ω2

p!ω

(ω2
0 − ω2)2 + !2ω2

. (2.67)

Let us write Poynting’s theorem in the integral form
∮

S · n̂ da = −
∫ [

E · ∂ D
∂ t

+ µ0 H · ∂ H
∂ t

]
dV

= −
∫ [

1
2

∂

∂ t
(ε0 E2 + µ0 H2) + E · ∂ P

∂ t

]
dV (2.68)

for a non-magnetic medium (µ = µ0), where the integral of the normal
component of S on the left-hand side is over a surface enclosing the volume V .
From (2.64),

E · ∂ P
∂ t

= m
e

(r̈ + ! ṙ + ω2
0 r) · Ne ṙ . (2.69)

Then ∮
S · n̂ da +

∫
Nm! ṙ2 dV = −

∫
Ẇ dV (2.70)

where
W ≡ 1

2ε0 E2 + 1
2µ0 H2 + N( 1

2 m ṙ2 + 1
2 mω2

0 r2). (2.71)
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Equation (2.70) is, of course, a statement of energy conservation. The first term on
the left-hand side is the rate at which energy flows out of the volume V , while the
second is the rate of loss of internal energy of the atoms in V due to the damping
mechanism characterized by !. The integral on the right-hand side gives the rate
at which the energy in V increases. Using (2.64), (2.66), and (2.67), we can write
the cycle average W of W as

W = 1
4
ε0|E|2

[
ω2

p(ω
2 + ω2

0)

(ω2
0 − ω2)2 + !2ω2

+ 1 + n2
R + n2

I

]

= 1
4
ε0|E|2

[
2nRnI

!ω
(ω2 + ω2

0) + 1 + n2
R + n2

I

]

= 1
2
ε0|E|2

[
2ωnRnI

!
+ n2

R

]
(2.72)

while the cycle-averaged magnitude of the Poynting vector has the familiar form

S = 1
2 nRε0|E|2. (2.73)

W is always positive. The definition vE = S/W of the energy velocity gives
an expression that is always positive and less than c [63]4:

vE = c
nR + 2ωnI/!

= vp

1 + 2ωnI/nR!
. (2.74)

In the limit of zero absorption, i.e. for a field frequency ω far from any absorption
resonance, we have

W = 1
4
ε0|E|2

[
ω2

p(ω
2 + ω2

0)

(ω2
0 − ω2)2

+ n2
R + 1

]
(2.75)

n2
R = 1 +

ω2
p

ω2
0 − ω2

(2.76)

nI/! =
ω2

pω/2nR

(ω2
0 − ω2)2

(2.77)

and the energy transport velocity (2.74) reduces to the group velocity:

vE = c

[
nR +

ω2ω2
p/nR

(ω2
0 − ω2)2

]−1

= c
nR + ω dnR/dω

= vg. (2.78)

The total energy is the energy W , plus the interaction energy between the
field and the medium, plus the energy in the ‘bath’ associated with the damping
4 Loudon [63] points out that the corresponding result in chapter 5 of Brillouin [32] is incorrect
because of algebraic errors.
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of the internal energy of the ‘atoms’. In the absence of damping the latter is zero
and expression (2.61) is the total energy density, which propagates at the velocity
vg ≤ c. When damping is included, the total energy W in the field and the atoms
propagates at the positive and subluminal velocity (2.74).

Chu and Wong [41] note that equation (2.74) implies a pulse delay rather
than an advance in their experiments and, therefore, that vg, not vE , is ‘the
measured quantity in this type of pulse propagation experiment’.

The internal energy of the medium in this model is

Wm = N[ 1
2 m ṙ2 + 1

2 mω2
0 r2] (2.79)

and, from (2.64), is found to have the cycle-averaged value

W m = 1
4
ε0|E|2

ω2
p(ω

2 + ω2
0)

(ω2
0 − ω2)

(2.80)

when damping is negligible (# = 0). Thus, in the absence of damping, we can
use this expression and (2.75) to define the difference [65]

u(F)
ω ≡ W − W m = 1

4ε0|E|2(n2
R + 1) (2.81)

for a non-magnetic and non-dissipative medium. u(F)
ω is identified by Diener [65]

as the ‘energy [density] of the electromagnetic field in the proper sense’. He
defines the energy transport velocity as

v
(F)
E = |Sω|/u(F)

ω (2.82)

which, using equations (2.61), (2.62), and (2.81), is found to be

v
(F)
E =

(
2nR

n2
R + 1

)

c (2.83)

which never exceeds c. It is, thus, possible to define an energy transport velocity
that is never superluminal, although, as acknowledged by Diener [65], this
velocity is more ‘interpretive’ than measurable. Note also that (2.83) assumes that
damping is negligible (nI = 0), in which case Loudon has shown that the more
conventional definition of the energy transport velocity implies non-superluminal
propagation of total energy.

Peatross et al [66] have taken a different approach based on a measurable
quantity, the Poynting vector. They define the pulse arrival time expectation
integral

〈t〉r ≡
û ·

∫ ∞
−∞ t S(r, t) dt

û ·
∫ ∞
−∞ S(r, t) dt

(2.84)
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where û is the unit vector in the direction in which the energy flux is detected. In
the frequency domain, the expected arrival time has the form

〈t〉r = T [E(r,ω)] ≡ −i
û ·

∫ ∞
−∞[∂ E(r,ω)/∂ω] × H∗(r,ω) dω

û ·
∫ ∞
−∞ S(r,ω) dω

. (2.85)

Using this expression, and without any essential approximations, Peatross et
al [66] show that the time delay #t ≡ 〈t〉r+#r − 〈t〉r associated with the
propagation of a pulse from r to r + #r can be expressed as the sum of two
distinctly interpretable terms5:

#t = G r+#r + Rr . (2.86)

G r , which Peatross et al call the net group delay, is given by

G r+#r =
û ·

∫ ∞
−∞ S(r,ω)[∂(Re k)/∂ω] · #r dω

û ·
∫ ∞
−∞ S(r,ω) dω

(2.87)

i.e. the propagation length divided by the average over all frequencies of the
inverse of the group velocity. The reshaping delay is given by

Rr = T [e− Im(k)·#r E(r,ω)] − T [Er,ω)] (2.88)

i.e. the difference between the expected pulse arrival times at the initial point
r with and without the change in spectral amplitude due to propagation in the
medium. In particular, this reshaping delay vanishes if the pulse spectrum does
not change upon propagation.

Peatross et al [66] present results of numerical computations for the
propagation of Gaussian pulses in a medium described by the Lorentz model with
absorption. For pulse bandwidths small compared to the absorption linewidth,
they obtain results consistent with those of Garrett and McCumber [37], i.e.
the delay time is dominated by the net group delay and can correspond to
superluminal and negative propagation velocities. For broadband pulses, the
reshaping delay becomes important and, in the extreme broadband limit of a delta-
function pulse, #t → #r/c (since n(ω) → 1 as ω → ∞). The latter result is
consistent with the fact that a sharp wave front propagates with velocity c.

2.8 Precursors

As shown in section 2.1, if a field with a temporal profile E(0, t) that is zero until
the time t = 0 is incident at the input plane z = 0 of a medium, the field at z > 0
inside the medium is zero until the time t = z/c. What happens after this time
depends on the particular form of n(ω) and E(0, t). Because the medium cannot
5 The subscripts r + #r and r can be interchanged in equation (2.86) without affecting #t [66].
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Figure 2.8. Schematic illustration of the appearance of first and second precursors
followed by the main pulse for the case in which the frequency ω of the signal (2.1) is
much less than the resonance frequency ω0 of the dielectric medium. After figure 20 in
Brillouin [32].

respond instantaneously to the applied field, the wavefront velocity is always
equal to c; and, after t = z/c, there are precursors, or ‘forerunners’, to the main
part of the propagating field, the first precursor arising from the high-frequency
parts of the field. A detailed discussion of precursors is given by Oughstun and
Sherman [21]. These authors provide a very large and useful list of references
on the subject of electromagnetic wave propagation in dispersive media. The
reader is also referred to the books by Jackson [14] and Stratton [67] for good
introductions to the theory of precursors.

The problem of determining the precursors at times after t = z/c is ‘simply’
that of solving equations (2.2) and (2.3), i.e. finding a solution of the equation

E(z, t) =
∫ ∞

−∞
dω (ω)e−iω[t−n(ω)z/c] (2.89)

where

(ω) = 1
2π

∫ ∞

−∞
dt E(0, t)eiωt . (2.90)

Obviously, the solution depends on the form of both the refractive index n(ω) and
the spectrum (ω) of the incident field.

The nature of the precursors obtained by Sommerfeld and Brillouin is shown
schematically in figure 2.8 for a signal of the type (2.1). The field at z in the
medium, which is characterized by a dielectric constant of the form (2.65), is zero
until the time z/c. At t = z/c, the first precursor (or Sommerfeld precursor)
begins as a weak-amplitude, high-frequency oscillation. The amplitude and
oscillation period increase with time. After a time ∼ n(0)z/c, a second precursor
(or Brillouin precursor) characterized by a lower oscillation frequency begins. Its
amplitude and oscillation period increase with time until the latter approaches that
of the signal; then the amplitude increases rapidly and the field starts to take the
form of what is the main part of the pulse.

Copyright © 2005 IOP Publishing Ltd.



58 Fast light

2.9 Six velocities

There have now been quite a few experimental studies of ‘abnormal’ group
velocities. In this chapter, only a few of these have been discussed, namely those
that initiated the recent interest in the subject and that demonstrate rather directly
the main points of the chapter. The most recent experiments appear to focus
more on the nature of signals and, consequently, we defer a discussion of them to
chapter 4.

Six velocities have been identified in this chapter:

(1) c = 299 792 458 m s−1, the speed of light in vacuum. According to special
relativity, no signal, or information, can be communicated at a velocity
greater than this.

(2) Phase velocity. As undergraduates are taught, this is associated with
monochromatic waves and, therefore, can be greater than c without violating
special relativity.

(3) Group velocity. This is not, in general, the velocity of signal or energy
propagation and it can be greater than c, infinite, or negative while still
retaining its meaning as the velocity of nearly undistorted pulse propagation,
as experiments have shown.

(4) Front velocity, the velocity of propagation of a step-function discontinuity.
A signal, according to Sommerfeld and Brillouin, begins with such a front,
which propagates at the velocity c in any medium.

(5) Signal velocity, which has been defined in several ways. In one context,
Sommerfeld and Brillouin defined it operationally as the velocity of
propagation of the half-the-peak-intensity point on the leading part of the
pulse. In reconciling superluminal group velocities with special relativity,
however, they defined a signal as ‘a limited wave motion: nothing until a
certain moment in time, then, for instance, a series of regular sine waves . . . ’.
The second definition has been generalized by Chiao and Steinberg [43] to
include all points of non-analyticity, i.e. a signal represents new information
that is not already foretold in an earlier portion of a waveform. This is
the fundamental sense in which signal and signal velocity are used here.
According to this meaning, special relativity demands that no signal velocity
can exceed c. As discussed in chapter 4, an operational definition of a signal
velocity requires careful consideration of noise in the field, the propagation
medium, and the detector.

(6) Energy transport velocity. This is approximately equal to the group velocity
when the frequency of the field is far from any absorption (or amplification)
resonances but near resonances theoretically it can appear to be superluminal
if we do not take proper account of the fact that energy is stored for a finite
time in the medium.
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Chapter 3

Quantum theory and light propagation

Interesting questions can arise when the propagation of light is considered
quantum mechanically: How does light propagate from one atom to another?
Does the ‘spooky action at a distance’ in quantum correlations of the Einstein–
Podolsky–Rosen type imply some sort of superluminal communication? How is
it that quantum mechanics ‘protects’ Einstein causality against various proposed
superluminal communication schemes based on such correlations? These and
related matters are taken up in this chapter.

The question of how light propagates from one atom to another was
addressed many years ago by Fermi, who made an approximation that rendered
inconclusive his attempted proof of ‘causal propagation’. We consider the
problem in both the Schrödinger and Heisenberg pictures, discuss Fermi’s
approximation, and prove that Fermi’s result was, in fact, correct. In essence,
Fermi made what in current jargon is called the rotating-wave approximation,
which is basically the approximation that only energy-conserving processes
contribute to transition amplitudes. In the rotating-wave approximation, the field
from a source is not properly retarded; and we show how this approximation
can lead to acausal consequences in the theory of photodetection, whereas the
properly formulated theory is, in fact, causal. Using a fully quantum-mechanical
approach to the refractive index of a dielectric medium, we show that an excited
source atom outside the medium can produce photon counts earlier than if the
emitted photon propagated through the same distance in vacuum: no violation
of Einstein causality is implied by this possibility. We review the no-cloning
theorem, which has its origin in a proposed superluminal communication scheme
based on Einstein–Podolsky–Rosen correlations, recall briefly what is meant by
teleportation, and show why a superluminal communication scheme based on
phase conjugation must fail. An intriguing conceptual question arising when
a cavity that inhibits spontaneous emission by an appropriately placed atom is
suddenly modified so that one of the mirrors is replaced by a detector: can
a photon be counted instantaneously after this replacement or only after some
retardation time? In the appendix to the chapter, we take the opportunity
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to express an opinion about whether Einstein would have been surprised by
experiments that support quantum theory while ruling out a certain class of hidden
variable theories.

3.1 Fermi’s problem

Suppose we have two identical atoms A and B in vacuum, such that atom A is
in the first excited state at time t = 0 while atom B is in the ground state. The
atoms are stationary and separated by a distance r . Atom A can spontaneously
emit a photon and drop to the ground state and there is a chance that the emitted
photon can be absorbed by atom B , causing it to jump from the ground state to
the first excited state. What is the probability at t ≥ 0 that atom B is in the first
excited state? We will solve a simplified version of this problem in which A and
B are assumed to have only two states, a ground state and an excited state (figure
3.1). Actually this is not a serious restriction as long as we are not concerned with
radiative level shifts (Lamb shifts). Aside from these shifts, the two-state model
yields essentially the same results as a full ‘multilevel atom’ calculation.

Figure 3.1. Two-state atoms, A and B, at rest and separated by a distance r in vacuum. A
is in the excited state at time t = 0 while B is in the ground state. What is the probability
that B is in its excited state at a time t > 0?

This model for light propagation in quantum electrodynamics (QED) has a
long history. The first publication to consider it appears to be that of Kikuchi
[68], whose work was carried out at the suggestion of Heisenberg. In his well-
known review in 1932, Fermi [69] discussed the problem as a model of how light
propagation is described by QED. He deduced that atom B has zero probability of
being excited at times t ≤ r/c, consistent with the idea that B can be excited only
after radiation from A has had time to propagate from A to B . But, in doing the
calculation, Fermi made an approximation without which the desired result would
not have been obtained1. Following a suggestion by Ferretti and Peierls [71, 72]
that QED might not provide a causal solution, the problem was revisited by
Hamilton [73], Heitler and Ma [74] and Fierz [75], who again showed that atom B
can be excited only after a time t = r/c. A quarter-century later, the problem was
taken up by Milonni and Knight [76, 77], who improved somewhat on Fermi’s
approximation and results but did not solve the problem of proving exactly that
atom B cannot be excited before t = r/c. The approximation made by Fermi was
also noted by Shirokov [78]. After another 20 years, a paper by Hegerfeldt [79]
was highlighted in a piece in Nature [80] stating that ‘a sixty-year-old calculation

1 Fermi’s problem is treated in the same approximation in Louisell [70].
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by Enrico Fermi is discovered to be in error, and inter-atomic signalling between
atoms to be potentially faster than light’. This, in turn, prompted a rebuttal [81].
The problem has continued to attract interest (see [82–86] and references therein).

We will now discuss in more detail the approximation made by Fermi. Then
we will show that ‘inter-atomic signalling between atoms’ is not ‘faster than
light’.

The Hamiltonian for the problem has the usual form2

Ĥ = ĤAtoms + ĤField + ĤInt. (3.1)

ĤAtoms is the Hamiltonian operator for the internal energy of the two atoms.
Denoting the difference in energy between the unperturbed excited and ground
states of each atom by ω0, we can write ĤAtoms in the form

ĤAtoms = ω0σ̂
†
Aσ̂A + ω0σ̂

†
B σ̂B (3.2)

where σ̂ and σ̂ † are, respectively, the two-state (Pauli) lowering and raising
operators. ĤField is the operator corresponding to the energy of the
electromagnetic field in vacuum:

ĤField = 1
2

∫
(ε0 Ê

2 + µ0 Ĥ
2
) dV . (3.3)

The electric field operator Ê can be expanded in plane-wave modes as

Ê(r) = i
∑

kλ

(
ωk

2ε0V

)1/2

[âkλeik·r − â†
kλe−ik·r ]ekλ (3.4)

and the corresponding expression for Ĥ follows from the (operator) Maxwell
equation ∇ × Ê = −µ0∂ Ĥ/∂ t . Here âkλ and â†

kλ are the usual annihilation and
creation operators, respectively, for the plane-wave mode with wavevector k and
polarization index λ (=1,2) and V is the volume of the quantization box. We use
a linear polarization basis in which the polarization unit vectors ekλ (k · ekλ = 0,
λ = 1, 2) are real. In terms of annihilation and creation operators, we have

ĤField =
∑

kλ

ωk(â
†
kλâkλ + 1

2 ). (3.5)

We will drop the zero-point field energy
∑

kλ
1
2 ωk , which is just an additive

constant in the Hamiltonian and plays no role for our purposes3,
We assume the standard electric dipole form of the atom–field interaction:

ĤInt = −d̂ A · Ê(r A) − d̂ B · Ê(r B) (3.6)
2 We follow the convention of using a caret (∧) to denote an operator in Hilbert space.
3 Implications of zero-point field energy are discussed, for instance, in [8].
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where d̂ A,B are the electric dipole moment operators for the atoms and the
positions of the atoms are specified by the coordinate vectors r A and r B . We
can express the dipole moment operators in terms of the two-state raising and
lowering operators as follows. In the two-state Hilbert space of either atom,
|1〉〈1| + |2〉〈2| = Î , the unit operator. Thus,

d̂ = Î d̂ Î = d(|1〉〈2| + |2〉〈1|) (3.7)

if we assume that 〈1|d̂|1〉 = 〈2|d̂|2〉 = 0, i.e. that the atom has no permanent
dipole moment, and if the dipole matrix element d is taken to be real: d =
〈1|d̂|2〉 = 〈2|d̂|1〉. Then

σ̂ = |1〉〈2| σ̂ † = |2〉〈1| (3.8)

d̂ = d(σ̂ + σ̂ †) (3.9)

and
ĤInt = −d A(σ̂A + σ̂ †

A) · Ê(r A) − d B(σ̂B + σ̂ †
B) · Ê(r B). (3.10)

The complete Hamiltonian is, therefore,

Ĥ = ω0σ̂
†
Aσ̂A + ω0σ̂

†
B σ̂B +

∑

kλ

ωk â†
kλâkλ

− i
∑

j=A,B

∑

kλ

[C j kλ(σ̂ j + σ̂ †
j )âkλ − C∗

j kλ(σ̂ j + σ̂ †
j )â

†
kλ] (3.11)

C j kλ ≡
(

ωk

2ε0 V

)1/2

d j · ekλeik·r j . (3.12)

To solve the Schrödinger equation

i
∂

∂ t
|ψ(t)〉 = Ĥ |ψ(t)〉 (3.13)

we first write the state vector |ψ(t)〉 as an expansion in the complete set of
eigenstates |φm〉 of the uncoupled atom–field system:

|ψ(t)〉 =
∑

m

bm(t)|φm〉 (ĤAtoms + ĤField)|φm〉 = Em |φm〉. (3.14)

Then, from the orthonormality of the |φm〉,

i ḃn(t) = Enbn(t) +
∑

m

bm(t)〈φn |ĤInt|φm〉. (3.15)

The initial state is

|φ1〉 = |+〉A|−〉B |0〉 E1 ≡ 0 (3.16)
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i.e. atom A is in the excited state (|+〉A), atom B is in the ground state (|−〉B ),
and the field is in the vacuum state of no photons (|0〉). This state is coupled by
ĤInt to the state

|φkλ〉 = |−〉A|−〉B |1kλ〉 Ekλ = (ωk − ω0) (3.17)

in which both atoms are in their ground states and there is one photon in the
mode (k,λ) of the electromagnetic field. Physically, this state results from the
spontaneous emission of a photon from the initial state |φ1〉. |φkλ〉, in turn, is
coupled to |φ1〉 and the state

|φ2〉 = |−〉A|+〉B |0〉 E2 ≡ 0 (3.18)

in which B is excited, A is unexcited, and there are no photons. Obviously the
processes coupling the states (3.16)–(3.18) conserve excitation number and, for
ωk = ω0, energy. They are described by terms σ̂ j â

†
kλ and σ̂

†
j âkλ in ĤInt, i.e. terms

associated with the creation of a photon and the ‘lowering’ of an atom, and the
annihilation of a photon and the ‘raising’ of an atom.

ĤInt also has energy-non-conserving parts involving σ̂ †
j â†

kλ and σ̂ j âkλ,
corresponding to the creation of a photon and the raising of an atom, and the
annihilation of a photon and the lowering of an atom. Anticipating that energy–
non-conserving terms should have a tiny effect on the probability amplitudes b1(t)
and b2(t) of interest, let us retain only the energy-conserving terms. That is, let
us include only the states |φ1〉, |φ2〉, and |φkλ〉 in the coupled amplitude equations
(3.15):

ḃ1(t) = −
∑

kλ

CAkλbkλ(t) (3.19)

ḃ2(t) = −
∑

kλ

CBkλbkλ(t) (3.20)

ḃkλ(t) = − i(ωk − ω0)bkλ(t) + C∗
Akλb1(t) + C∗

Bkλb2(t). (3.21)

Using the formal solution of the last equation in the first two, we obtain
coupled integro-differential equations for b1(t) and b2(t):

ḃ1(t) = −
∫ t

0
dt ′ b1(t ′)

∑

kλ

|Ckλ|2ei(ωk−ω0)(t ′−t)

−
∫ t

0
dt ′ b2(t ′)

∑

kλ

CAkλC∗
Bkλei(ωk−ω0)(t ′−t) (3.22)

ḃ2(t) = −
∫ t

0
dt ′ b2(t ′)

∑

kλ

|Ckλ|2ei(ωk−ω0)(t ′−t)

−
∫ t

0
dt ′ b1(t ′)

∑

kλ

CBkλC∗
Akλei(ωk−ω0)(t ′−t) (3.23)
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where, for the identical atoms assumed here,

|Ckλ|2 = |CAkλ|2 = |CBkλ|2. (3.24)

We will first do the mode summations in (3.22) and (3.23), assuming, for
simplicity, that d A = d B ≡ d = d∗ and that d is orthogonal to the vector
r ≡ r B − r A pointing from A to B . In the limit V → ∞, we replace in the usual
fashion4 the summation

∑
k by the integration (V/8π3)

∫
d3k. Then5

∑

kλ

|Ckλ|2ei(ωk−ω)(t ′−t)

→ V
8π3

∫
d3k

ωk

2ε0 V
ei(ωk−ω)(t ′−t)

∑

λ=1,2

(d · ekλ)
2

= d2

16π3ε0

∫
d3k ωkei(ωk−ω)(t ′−t)[1 − (d · k)2]

= d2

16π3ε0

∫
dk k2ωkei(ωk−ω)(t ′−t)2π

∫ π

0
dθ sin θ(1 − cos2 θ)

= d2

6π2ε0 c3

∫ ∞

0
dω ω3ei(ω−ω0)(t ′−t). (3.25)

Similarly,

∑

kλ

CBkλC∗
Akλei(ωk−ω)(t ′−t) = d2

16π3ε0

∫
dk k2ωkei(ωk−ω)(t ′−t)

×
∫

d&k [1 − (d · k)2]eik·r (3.26)

where
∫

d&k is an integration over solid angles about k. Let the z direction be the
direction of r . Then, by assumption, d = ax + b y, where a2 + b2 = 1 and x, y
are the unit vectors in the x, y directions, d · k = a(k · x) + b(k · y),

∫
d&k [1 − (d · k)2]eik·r

=
∫ 2π

0
dφ

∫ π

0
dθ ([1 − sin2 θ(a2 cos2 φ + b2 sin2 φ)]

− 2ab sin2 θ sin φ cos φ)eikr cos θ

4 Based on the box normalization used in writing (3.4), we impose periodic boundary conditions,
assuming that space is divided into cubes of volume V = L3. Then (kx , ky , kz) =
(2π/L)(nx , ny , nz), where the n’s are integers, and the factor L3/(2π)3 appears when we convert
the summation over the n’s to an integration over the k’s.
5 Here d and k are the unit vectors in the directions of d and k, respectively. Note that, since ek1,
ek2, and k are mutually orthogonal,

∑
λ=1,2(d · ekλ)2 = 1 − (d · k)2.
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= π

∫ π

0
dθ sin θ [1 + cos2 θ ]eikr cos θ

= 4π

(
sin kr

kr
+ cos kr

(kr)2 − sin kr
(kr)3

)
≡ 4πG

(ωr
c

)
(3.27)

and
∑

kλ

CBkλC∗
Akλei(ωk−ω)(t ′−t) =

∑

kλ

C∗
BkλCAkλei(ωk−ω)(t ′−t)

= d2

4π2ε0 c3

∫
dω ω3G

(ωr
c

)
ei(ω−ω0)(t ′−t).

(3.28)

With these results, we can write equations (3.22) and (3.23) as

ḃ1(t) = − d2

6π2ε0 c3

∫ t

0
dt ′ b1(t ′)

∫ ∞

0
dω ω3ei(ω−ω0)(t ′−t)

− d2

4π2ε0 c3

∫ t

0
dt ′ b2(t ′)

∫ ∞

0
dω ω3G

(ωr
c

)
ei(ω−ω0)(t ′−t) (3.29)

ḃ2(t) = − d2

6π2ε0 c3

∫ t

0
dt ′ b2(t ′)

∫ ∞

0
dω ω3ei(ω−ω0)(t ′−t)

− d2

4π2ε0 c3

∫ t

0
dt ′ b1(t ′)

∫ ∞

0
dω ω3G

(ωr
c

)
ei(ω−ω0)(t ′−t). (3.30)

The first term on the right-hand side of either equation is associated with single-
atom spontaneous emission. We will make an approximation characteristic of
virtually every approach to the theory of spontaneous emission, namely the
‘Weisskopf–Wigner’ or ‘Markovian’ approximation. In the present formulation,
this approximation is tantamount to the replacement of b1(t ′) by b1(t) in the first
term on the right-hand side of (3.29) and of b2(t ′) by b2(t) in the first term on the
right-hand side of (3.30). This approximation assumes that the time evolution of
the excited-state probability in free-space spontaneous emission is ‘memory-less’
or Markovian and it leads to the exponential decay of the excited-state probability
that agrees extremely well with experiment. The approximation of exponential
decay results from the additional replacement

∫ t

0
dt ′ ei(ω−ω0)(t ′−t) → πδ(ω − ω0) − iP

1
ω − ω0

(3.31)

where P indicates that the Cauchy principal part is to be taken in integrals over ω.
This replacement comes from

∫ t

0
dt ′ ei(ω−ω0)(t ′−t) = sin(ω − ω0)t

ω − ω0
− i

[
1 − cos(ω − ω0)t

ω − ω0

]
. (3.32)
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The first term oscillates rapidly and effectively vanishes unless ω = ω0, in which
case it is equal to t . The second term vanishes if ω = ω0 but it is otherwise
effectively 1/(ω − ω0) owing again to rapid oscillations. Thus, for sufficiently
long times, we make the replacement (3.31).

With these approximations, the first term on the right-hand side of (3.29) is

− d2

6π2ε0 c3

[
π

∫ ∞

0
dω ω3δ(ω − ω0) − iP

∫ ∞

0

dω ω3

ω − ω0

]
b1(t)

= −
[γ

2
− i&

]
b1(t) (3.33)

where

γ = d2ω3
0

3πε0 c3 (3.34)

and

& = d2

6π2ε0 c3 P
∫ ∞

0

dω ω3

ω − ω0
(3.35)

γ is just the Einstein A coefficient for the rate of decay of the excited-state
probability in spontaneous emission. & corresponds to a radiative level shift and,
as mentioned earlier, is not correctly accounted for by the two-state model for an
atom6. Partly for this reason, but mainly because it is simply irrelevant for our
purposes, we ignore the single-atom radiative level shift: it can be assumed to
have been included in the definition of the transition frequency ω0. We make the
same approximations in the first term on the right-hand side of (3.30) and are left
with

ḃ1(t) = γ

2
b1(t) − 3γ

4πω3
0

∫ t

0
dt ′ b2(t ′)

∫ ∞

0
dω ω3G

(ωr
c

)
ei(ω−ω0)(t ′−t) (3.36)

ḃ2(t) = − γ

2
b2(t) − 3γ

4πω3
0

∫ t

0
dt ′ b1(t ′)

∫ ∞

0
dω ω3G

(ωr
c

)
ei(ω−ω0)(t ′−t).

(3.37)

If we now make the Markovian approximation of replacing b2(t ′) and b1(t ′)
by b2(t) and b1(t) in the terms coupling b1 and b2, we obtain the well-known
results for the resonant interaction of two identical atoms [76, 87] when we
use (3.31). However, this approximation treats the interaction as effectively
instantaneous in that b1(t) is coupled directly to b2(t). Let us instead evaluate the
integral over ω appearing in (3.36) and (3.37). The near-field (1/r3) contribution
to this integral is

−
∫ ∞

0
dω ω3 sin kr

(kr)3 ei(ω−ω0)(t ′−t)

6 Nor is it properly accounted for in the electric dipole form of the Hamiltonian used here. See, for
instance, [8].
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= − c3

2ir3 eiω0(t ′−t)
∫ ∞

0
dω [eiω(t ′−t+r/c) − eiω(t ′−t−r/c)]. (3.38)

This is not properly retarded—there are contributions from the advanced time
t ′ = t + r/c as well as the retarded time t ′ = t − r/c. But since the
dominant contribution is expected to come from field frequencies ω ∼= ω0,
while contributions from frequencies far removed from ω0 are expected to be
unimportant, let us make the approximation of extending the integration in (3.38)
to −∞:

−
∫ ∞

0
dω ω3 sin kr

(kr)3 ei(ω−ω0)(t ′−t)

→ − c3

2ir3 e−iω0(t ′−t)
∫ ∞

−∞
dω [eiω(t ′−t+r/c) − eiω(t ′−t−r/c)]

→ −πc3

ir3 e−iω0(t ′−t)δ(t ′ − t + r/c) (3.39)

since t ′ < t in (3.36) and (3.37). This is the approximation made by Fermi. To
express it in a form more specifically related to Fermi’s calculation, note that if
we make the Markovian approximation in (3.36) and (3.37) we are left with the t ′

integration
∫ t

0
dt ′ ei(ω−ω0)(t ′−t) = πδ(ω − ω0) − iP

1
ω − ω0

= 1
ω − ω0 − iε

(ε → 0+)

(3.40)

and
∫ ∞

0
dω ω3 sin kr

(kr)3 ei(ω−ω0)(t ′−t) = c3

r3

∫ ∞

0
dω

sin(ωr/c)
ω − ω0 − iε

. (3.41)

This form shows more directly that the approximation of extending the integration
over ω to −∞ is a sensible one. But it is, nevertheless, an approximation and, by
invoking it, we have not proven that b2(t) is zero unless t > r/c.

The terms going as 1/r and 1/r2 in the integral over ω in (3.36) and (3.37)
are evaluated similarly in this approximation:

∫ ∞

0
dω ω3 sin kr

kr
ei(ω−ω0)(t ′−t)

→ c
2ir

e−iω0(t ′−t)
∫ ∞

−∞
dω ω2[eiω(t ′−t+r/c) − eiω(t ′−t−r/c)]

→ −πc
ir

e−iω0(t ′−t) ∂2

∂ t ′2
δ(t ′ − t + r/c) (3.42)

∫ ∞

0
dω ω3 cos kr

(kr)2 ei(ω−ω0)(t ′−t)
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→ c2

2r2 e−iω0(t ′−t)
∫ ∞

−∞
dω ω[eiω(t ′−t+r/c) + eiω(t ′−t−r/c)]

→ πc2

ir2 e−iω0(t ′−t) ∂

∂ t ′
δ(t ′ − t + r/c). (3.43)

Then (3.36) and (3.37) become

ḃ1(t) = γ

2
b1(t) − 3i

4
γ

[
−i
k0r

+ 1

k2
0r2

+ i

k3
0r3

]

eik0r b2

(
t − r

c

)
θ

(
t − r

c

)

(3.44)

ḃ2(t) = γ

2
b2(t) − 3i

4
γ

[
−i
k0r

+ 1

k2
0r2

+ i

k3
0r3

]

eik0r b1

(
t − r

c

)
θ

(
t − r

c

)

(3.45)

where k0 = ω0/c, θ is the unit step function and we have used the fact that
b1(t) and b2(t) vary slowly compared with exp(−iω0t) so that, for instance,
(∂/∂ t)[b1(t) exp(−iω0t)] ∼= −iω0b1(t) exp(−iω0t).

Equations (3.44) and (3.45) exhibit the correct dependence on the retardation
time t − r/c. The solution for the initial state of interest, namely for b1(0) = 1
and b2(0) = 0, is

b1(t) =
∞∑

n even

αn

n!
(

t − nr
c

)n
e− 1

2 γ (t−nr/c)θ
(

t − nr
c

)
(3.46)

b2(t) =
∞∑

n odd

αn

n!
(

t − nr
c

)n
e− 1

2 γ (t−nr/c)θ
(

t − nr
c

)
(3.47)

where

α = 3γ

4

(
i

k0r
− 1

k2
0r2

− i

k3
0r3

)

. (3.48)

These solutions show the expected behaviour of the probability amplitudes. Atom
B has zero probability of being excited until after the time t = r/c that it takes
light to propagate from A to B after emission by A. Atom A is only affected
by atom B after the time it takes light to propagate from A to B and then back
to A. This continues indefinitely: the probability amplitude for the initial state
|+〉A|−〉B |0〉 depends only on the even retardation times 0, 2r/c, 4r/c, etc.
Similarly the probability amplitude for the state |−〉A|+〉B |0〉 depends only on
the odd retardation times r/c, 3r/c, etc. Exactly the same behaviour is found in
the radiative coupling of two non-identical atoms [77] as well as two classical
dipole oscillators [88]. If we replace t − nr/c by t in (3.46) and (3.47), we can
sum the series to obtain well-known results for the resonant interaction of two
identical atoms [76, 87], the same interaction one obtains when the Markovian
approximation is made in (3.36) and (3.37).
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These results are based on the approximation of including only energy-
conserving states, together with the other approximation made by Fermi,
namely the approximation of extending frequency integrals to −∞. The first
approximation without the second does not lead to correctly retarded expressions
like (3.44)–(3.47).

As discussed earlier, the Hamiltonian includes energy-non-conserving
processes such as the emission of a photon with the simultaneous raising of an
atomic state. Thus, the term σ̂ †

j â†
kλ in ĤInt couples the initial state |φ1〉 to the

state |+〉A|+〉B |1kλ〉, no probability amplitude for which has been included in
our analysis. This state is, in turn, coupled by ĤInt to states with more than
one photon in the field: going beyond our approximation of accounting for only
energy-conserving processes obviously introduces an infinite number of states
that we have not accounted for. In a rather complicated analysis, Berman and
Dubetsky [86] have shown how properly retarded probability amplitudes can
be obtained when energy-non-conserving states are included. In other words,
including energy-non-conserving states leads ipso facto to frequency integrals
extending to −∞.

Another remark relating to the extension of frequency integrals to −∞: if
we let r → ∞ equation (3.29) reduces to

ḃ1(t) = − γ

2πω3
0

∫ t

0
dt ′ b1(t ′)

∫ ∞

0
dω ω3ei(ω−ω0)(t ′−t) (3.49)

which describes the time evolution due to spontaneous emission of the excited-
state amplitude of atom A in the absence of atom B . The Markovian
approximation gives the familiar exponential decay:

|b1(t)|2 = e−γ t . (3.50)

But suppose that, instead of the Markovian approximation, we extend the
integration over ω in (3.49) to −∞:

ḃ1(t) → − iγ

2πω3
0

∫ t

0
dt ′ b1(t ′)e−iω0(t ′−t) ∂3

∂ t ′3

∫ ∞

−∞
dω eiω(t ′−t)

→ iγ

2ω3
0

eiω0t ∂3

∂ t3 [b(t)e−iω0t ] (3.51)

where, in the second line, we have dropped (divergent) terms associated with
radiative level shifts—which as already noted (see footnote 6) are not described
correctly in our model anyway. The appearance of a third derivative with respect
to time when we extend the ω integral to −∞ is reminiscent of the classical
theory of radiation reaction [recall, for instance, equation (1.66)]. Of course the
approximation that b1(t) varies negligibly on a time scale ∼ ω−1

0 in equation
(3.51) reproduces the exponential decay law (3.50).
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3.1.1 Heisenberg picture

The complication of energy-non-conserving states in the Schrödinger picture can
be circumvented by taking the Heisenberg-picture approach in which operators
rather than states evolve in time. The operator σ̂B , for instance, evolves in time
according to the Heisenberg equation of motion

i
dσ̂B

dt
= [σ̂B, Ĥ ]. (3.52)

σ̂B commutes with every operator in the Hamiltonian except σ̂
†
B :

[σ̂B, σ̂
†
B ] = −(σ̂

†
B σ̂B − σ̂B σ̂

†
B) ≡ −σ̂z B (3.53)

where we now introduce the Pauli σ̂z operator with algebraic properties familiar
from the theory of a spin- 1

2 system (or any other two-state system):

[σ̂z B, σ̂B ] = −2σ̂B [σ̂z B, σ̂
†
B ] = 2σ̂

†
B . (3.54)

From (3.1), (3.2), (3.6), and (3.53), it follows that

dσ̂B

dt
= − iω0[σ̂B(t), σ̂ †

B (t)σ̂B(t)] + i
d B · Ê(r B, t)[σ̂B (t), σ̂ †

B(t)]

= − iω0σ̂B(t) − i
d B · Ê(r B, t)σ̂z B (t). (3.55)

The expectation value 〈σ̂ †
B (t)σ̂B(t)〉 in the initial state of the atom–field system is

the probability at time t that atom B is in the excited state.
The time evolution of the electric field operator Ê(r B , t) is determined by

the time evolution of the mode annihilation and creation operators âkλ and â†
kλ:

dâkλ

dt
= −iωk âkλ +

∑

j=A,B

C∗
j kλ(σ̂ j + σ̂

†
j ) (3.56)

where we have used (3.11) and the commutation relations

[âkλ, âk′λ′] = 0 [âkλ, â†
k′λ′] = δλλ′δ3

k,k′ . (3.57)

Thus,

âkλ(t) = âkλ(0)e−iωk t +
∑

j=A,B

C∗
j kλ

∫ t

0
dt ′ σ̂x j (t ′)eiωk(t ′−t) (3.58)

where we have introduced the Pauli σ̂x operator, σ̂x j ≡ σ̂ j + σ̂ †
j . The electric field

operator at r B, t is, therefore,

Ê(r B , t) = Ê0(r B , t) + Ê B(r B, t) + Ê A(r B , t) (3.59)
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Ê0(r B , t) = i
∑

kλ

(
ωk

2ε0V

)1/2

âkλ(0)e−i(ωkt−k·r B) + h.c. (3.60)

ÊB(r B , t) = i
∑

kλ

ωk

2ε0V
(d · ekλ)ekλ

∫ t

0
dt ′ σ̂x B(t ′)eiωk(t ′−t) + h.c. (3.61)

Ê A(r B , t) = i
∑

kλ

ωk

2ε0V
(d · ekλ)ekλeik·r

∫ t

0
dt ′ σ̂x A(t ′)eiωk(t ′−t) + h.c.

(3.62)

where h.c. ≡ hermitian conjugate and again we define r = r B − r A and make
the simplifying assumption that d B = d A = d = d∗. Ê0(r B , t) is the free field
at r B , i.e. the quantum field that exists at r B even in the absence of any sources.
Ê B(r B, t) is the field of atom B evaluated at the position of atom B , i.e. it is
the ‘radiation reaction’ field acting on atom B . Ê A(r B , t) is the field of atom A
evaluated at the position of atom B .

The most interesting part of Ê(r B, t) for our purposes is Ê A(r B , t), for it is
through this field that A and B interact. This field is easily evaluated using the
mode summation formulas employed in our Schrödinger-picture approach:

d · Ê A(r B, t) = id2

2ε0V
V

8π3

∫
dk k2ωk

∫
d&k [1 − (k · d)2]eik·r

×
∫ t

0
dt ′ σ̂x A(t ′)eiωk(t ′−t) + h.c.

= id2

4π2ε0c3

∫ t

0
dt ′ σ̂x A(t ′)

∫ ∞

0
dω ω3G

(ωr
c

)
eiω(t ′−t) + h.c.

= − d2

4πε0

∫ t

0
dt ′ σ̂x A(t ′)

[
1
r3 δ

(
t ′ − t + r

c

)

− 1
cr2

∂

∂ t ′
δ
(

t ′ − t + r
c

)
+ 1

c2r
∂2

∂ t ′2
δ
(

t ′ − t + r
c

) ]

= − d2

4πε0

[
1
r3 σ̂x A

(
t − r

c

)
+ 1

cr2
˙̂σ x A(t − r/c)

+ 1
c2r

¨̂σ x A

(
t − r

c

)
θ

(
t − r

c

) ]
. (3.63)

This has exactly the same form as the field from a classical dipole. The fact
that it vanishes for times t < r/c ensures that the interaction between the atoms is
exactly causal and, in particular, that atom B in the Fermi model cannot be excited
before times t ≤ r/c [85].

Hegerfeldt [79] has stated a theorem to the effect that the initially unexcited
atom B ‘starts to move out of the ground state immediately and is thus influenced
by atom A instantaneously’. It has been noted, however, that the theorem applies
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regardless of whether atom A is present and, therefore, it should not be used as
an argument against causality in the two–atom interaction [85]. Such ‘immediate
influences’ are associated with the fact that the assumed initial state is not an
eigenstate of the interacting atom–field system: a true eigenstate of the system
involves an admixture of ‘bare’ states such as |φ1〉, |φ2〉, and |φkλ〉. Such
admixtures involving excited, unperturbed atomic (and field) states occur even in
the case of a single atom coupled to the field, and are associated with phenomena,
such as the Lamb shift, involving virtual (energy-non-conserving) transitions. In
the two-atom case, however, there are no interatomic (r-dependent) ‘immediate
influences’ before the time r/c after the system is presumed to be prepared in an
eigenstate of the unperturbed atom–field system. This is implied by the operator
equation (3.63), which makes no reference to any specific states, bare or dressed.

To illustrate the nature of the ‘immediate influences’ when a system is
supposed to be in an unperturbed state at t = 0, consider the problem of a single
two-level atom interacting with a single field mode of frequency ω. The single-
mode assumption here is made only for simplicity and is certainly not essential
for the present discussion. The Hamiltonian for this system is

H = 1
2 ω0σ̂z + ωa†â − iC(â − â†)(σ̂ + σ̂ †) (3.64)

where we now express ĤAtom in terms of the σ̂z operator, as is often done7. The
Heisenberg equations of motion for σ̂ , σ̂z , and â are

˙̂σ = − iω0σ̂ + C
(â − â†)σ̂z (3.65)

˙̂σ z = 2C
(σ̂ â − â†σ̂ ) + h.c. (3.66)

and
˙̂a = −iωâ + C

(σ̂ + σ̂ †). (3.67)

It is convenient to define the slowly-varying operator

Ŝ(t) = σ̂ (t)eiω0t (3.68)

in terms of which we obtain the following formal equation for the expectation
value of the population difference operator σ̂z :

〈 ˙̂σ z(t)〉 = 4C2

2 Re
∫ t

0
dt ′ [〈Ŝ(t)Ŝ(t ′)〉ei(ω−ω0)t ′e−i(ω+ω0)t

+ 〈Ŝ(t)Ŝ†(t ′)〉ei(ω+ω0)(t ′−t) − 〈Ŝ†(t ′)Ŝ(t)〉e−i(ω−ω0)(t ′−t)

− 〈Ŝ(t ′)Ŝ(t)〉e−i(ω+ω0)t ′ei(ω−ω0)t ]. (3.69)
7 σ̂ †σ̂ = 1

2 [σ̂ †, σ̂ ] + 1
2 (σ̂ †σ̂ + σ̂ σ̂ †) = 1

2 σ̂z + 1
2 Î , since σ̂ †σ̂ + σ̂ σ̂ † is the unit operator ( Î ) in

the two-state Hilbert space. Therefore, ω0σ̂ †σ̂ = 1
2 ω0σ̂z plus a constant term that commutes with

every operator and, as such, can be dropped from the Hamiltonian.
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We have assumed an initial state such that the field is in its vacuum state but no
approximations have been made.

The terms involving ω + ω0 do not arise when one ignores energy-non-
conserving processes. But even with such processes there are no ‘real’ transitions
over times long compared with a few periods of oscillation. For short times,
however,

〈 ˙̂σ z(t)〉 ∼= 2C2

2 〈Ŝ(0)Ŝ†(0)〉
∫ t

0
dt ′ ei(ω+ω0)(t ′−t) + c.c. = 4C2

2

sin(ω + ω0)t
(ω + ω0)

(3.70)
where we have used the operator identity Ŝ2(0) = 0 and also the expectation
values 〈Ŝ(0)Ŝ†(0)〉 = 1, 〈Ŝ†(0)Ŝ(0)〉 = 0 appropriate to the case of the atom
initially in its lower state. Thus,

Ṗ(t) = 1
2
〈 ˙̂σ z(t)〉 = 2C2

2

sin(ω + ω0)t
ω + ω0

(3.71)

and the probability of the atom being excited over short times is

P(t) = 2C2

2

(
1

ω + ω0

)2

[1 − cos(ω + ω0)t]. (3.72)

For ω = ω0 and ω0t & 1, for instance,

P(t) ∼= C2

2ω2
0

ω2
0t2 = C2

2 t2 (3.73)

i.e. there is a non-vanishing probability for t & ω−1
0 that the atom, initially

in its lower state with no photons in the field, is excited. This is consistent
with the energy–time uncertainty relation: for short enough times ‘energy-non-
conserving’ transitions are possible. Over times long in the sense of the energy–
time uncertainty relation, of course, only energy-conserving processes contribute
to real transition rates and the energy-non-conserving terms manifest themselves
only through virtual transitions contributing to energy-level shifts.

These result are entirely consistent with Hegerfeldt’s theorem based on
continuity requirements. The point we wish to make is that ‘immediate
influences’ of the type suggested by Hegerfeldt are present even in the absence
of a second atom and that they pose no real difficulty for the proof of causality in
the Fermi problem.

3.2 Causality in photodetection theory

The quantum theory of photodetection [89–94] leads to normally ordered field
correlation functions such as

G(1)
i j (r1, t1; r2, t2) = 〈Ê (−)

i (r1, t1)Ê (+)
j (r2, t2)〉 (3.74)
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G(2)
i j k!(r1, t1; r2, t2; r3, t3; r4, t4) = 〈Ê (−)

i (r1, t1)Ê (−)
j (r2, t2)

× Ê (+)
k (r3, t3)Ê (+)

! (r4, t4)〉 (3.75)

where Ê
(+)

(r, t) and Ê
(−)

(r, t) are, respectively, the positive- and negative-

frequency parts of the field. Ê
(+)

(r, t) may be defined formally as

Ê
(+)

(r, t) = lim
ε→0+

1
2π i

∫ ∞

−∞

dt ′ Ê(r, t − t ′)
t ′ − iε

. (3.76)

Thus, if Ê(r, t) has a Fourier expansion involving e±iωt , ω > 0, the integration
of (3.76) over a contour along the real axis and a semicircle in the upper half-
plane picks out the ‘positive-frequency’ e−iωt components, whereas closure of
the contour in the lower half-plane ensures that there are no ‘negative-frequency’
components eiωt .

In the absence of sources, the quantized electric field has the positive-
frequency part

Ê
(+)

0 (r, t) = i
∑

kλ

(
ωk

2ε0V

)1/2

âkλ(0)e−iωkt eik·r ekλ. (3.77)

With sources, however, âkλ(t) (= âkλ(0)e−iωk t and

i
∑

kλ

(
ωk

2ε0V

)1/2

âkλ(t)eik·r ekλ (3.78)

is not exactly equal to the positive-frequency part of the field defined by (3.76).
That is, equations (3.76) and (3.78), in general, define two different fields. Neither
definition gives a ‘causal’ (retarded) field, although of course the complete

electric field operator Ê = Ê
(+) + Ê

(−)
is retarded and is the same regardless

of whether (3.76) or (3.78) is used to define Ê
(±)

. The non-retarded character of
E(±)(r, t) has raised concern about the general validity of the standard theory of
photodetection based on normally ordered field correlation functions [95,96]. We
now address the question of causality in the theory of photodetection.

Consider first the simplest case, the measurement of the intensity of an
optical field. Our model for the detector will at first be a two-state atom at a point
r , so that the Hamiltonian for the system consisting of the field and the detector is

Ĥ = 1
2 ω0σ̂z + ĤField − d j Ê j (r)σ̂x (3.79)

where we use the summation convention for repeated Cartesian indices. The
Heisenberg equation of motion for σ̂z(t) is easily found from the commutation
relations for the Pauli two-state operators:

˙̂σ z(t) = 1
i

[σ̂z, Ĥ ] = −2i
d j Ê j (r)[σ̂ (t) − σ̂ †(t)]

= 2i
d j [σ̂ †(t)Ê j (r, t) − Ê j (r, t)σ̂ (t)] (3.80)
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where, in the second line, we have made use of the commutativity of equal-time
atom and field operators to put the operator products in an order that happens to
be convenient. Similarly,

˙̂σ (t) = −iω0σ̂ (t) − i
d j Ê j (r, t)σ̂z(t). (3.81)

We use the formal solution of this equation in (3.80):

〈σ̇z(t)〉 = − 4
2 d j dk Re

∫ t

0
dt ′ 〈Ê j (r, t)Êk(r, t ′)σ̂z(t ′)〉eiω0(t ′−t). (3.82)

Here the expectation value is over an initial state |ψ〉 with the detector atom in
the ground state, so that σ̂ (0)|ψ〉 = 〈ψ|σ̂ †(0) = 0, and this has been assumed
in writing (3.82). We are interested, of course, in the more practical situation in
which the detector is not a two-state system but, in fact, has a continuum of pos-
sible final states, such that stimulated emission from an excited state is negligible
compared with absorption from the ground state and the detector is consequently
unsaturable. We also assume that absorption is weak enough that the occupation
probability of the initial state of the detector remains close to unity. In the context
of our idealized two-state atom, this means we can take σ̂z(t ′) ∼= σ̂z(0) in (3.82)
and use the assumption σ̂z(0)|ψ〉 = −|ψ〉 that the detector atom is initially in its
ground state:

〈 ˙̂σz(t)〉 ∼= 4
2 d j dk Re

∫ t

0
dt ′ 〈Ê j (r, t)Êk(r, t ′)〉eiω0(t ′−t). (3.83)

Here the field may be written as

Ê j (r, t) = Ê0, j (r, t) + ÊRR, j (r, t) + ÊS, j (r, t). (3.84)

Ê0, j (r, t) is again the source-free ‘vacuum’ field, while ÊRR, j (r, t) is the radi-
ation reaction field of the detector on itself. ÊS, j (r, t) is the ‘external’ source
field due, for instance, to a thermal source or a laser. Since the ‘full’ source field
consisting of both positive- and negative-frequency parts is, of course, retarded
[cf (3.63)], we can write ÊS, j (r, t) = F̂j (r, t)θ(t − r/c) and, therefore,

Ê j (r, t) = Ê0, j (r, t) + ÊRR, j (r, t) + F̂j (r, t)θ
(

t − r
c

)
(3.85)

where r is the distance from the external source to the detector. We are sim-
ply indicating explicitly here the retarded nature of the field from the source at a
distance r from the detector.

We proceed now by writing

Ê0, j (r, t) = Ê (+)
0, j (r, t) + Ê (−)

0, j (r, t) (3.86)

ÊRR, j (r, t) = Ê (+)
RR, j (r, t) + Ê (−)

RR, j (r, t) (3.87)

F̂j (r, t) = F̂ (+)
j (r, t) + F̂ (−)

j (r, t) (3.88)
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where the positive-frequency parts of the fields Ê0, ÊRR, and F̂ are defined
formally by (3.76) and the negative-frequency parts by hermitian conjugation.
The positive- and negative-frequency parts, therefore, have Fourier components
e−iωt and eiωt , respectively, where all frequencies ω are, of course, positive.
From (3.31), it then follows that only the normally ordered combination
〈Ê (−)

j (r, t)Ê (+)
k (r, t ′)〉 will contribute to (3.83) for times t % ω−1

0 , i.e. only
this combination of positive- and negative-frequency parts of the field produces
energy-conserving transitions:

〈 ˙̂σz(t)〉 ∼= 4
2 d j dk Re

∫ t

0
dt ′ 〈Ê (−)

j (r, t)Ê (+)
k (r, t ′)〉eiω0(t ′−t). (3.89)

From (3.86)–(3.88), therefore,

〈 ˙̂σz(t)〉 ∼= 4
2 d j dk Re

∫ t

0
dt ′ [〈Ê (−)

RR, j (r, t)Ê (+)
RR, j (r, t ′)〉

+ θ
(

t ′ − r
c

)
〈Ê (−)

RR, j (r, t)F̂ (+)
j (r, t ′)〉

+ θ
(

t − r
c

)
〈F̂ (−)

j (r, t)Ê (+)
RR,k(r, t ′)〉

+ θ
(

t − r
c

)
θ

(
t ′ − r

c

)
〈F̂ (−)

j (r, t)F̂ (+)
j (r, t ′)〉]eiω0(t ′−t) (3.90)

where we have used Ê (+)
0, j (r, t)|ψ〉 = 〈ψ|Ê (−)

0, j (r, t) = 0.

d · ÊRR(r, t) is easily seen to be equal to the r → 0 limit of the second line
of equation (3.63). In this limit, G(ωr/c) → 2/3 and

d · ÊRR(r, t) = d2

3π2ε0c3

∫ t

0
dt ′ σ̂x (t ′) Re

∫ ∞

0
dω iω3eiω(t ′−t)

= − d2

3πε0c3

∫ t

0
dt ′ σ̂x (t ′)

∂3

∂ t ′3
δ(t ′ − t)

→ − d2

6πε0c3

...

σ̂ x (t) (3.91)

where, in the last line, we have once again dropped terms associated with radiative
level shifts. d · ERR has the same form as the radiation reaction field of a classical
point dipole: the divergent terms we are ignoring here correspond classically
to the divergent electromagnetic mass. Now since σ̂x (t) = σ̂ (t) + σ̂ †(t) and
σ̂ (t) ∼= σ̂ (0) exp(−iω0t), σ̂ †(t) ∼= σ̂ †(0) exp(iω0t), we have

...

σ̂ x (t) ∼= iω3
0[σ̂ (t) − σ̂ †(t)] (3.92)

which means that the positive- and negative-frequency parts of d j ÊRR, j (r, t) are

d j Ê (+)
RR, j (r, t) ∼= i γ

2
σ̂ (t) (3.93)

d j Ê (−)
RR, j (r, t) ∼= − i γ

2
σ̂ †(t). (3.94)
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Consequently,

d j dk〈Ê (−)
RR, j (r, t)Ê (+)

RR,k(r, t ′)〉 =
(

γ

2

)2

〈σ̂ †(t)σ̂ (t ′)〉

∼=
(

γ

2

)2

〈σ̂ †(0)σ̂ (0)〉e−iω0(t ′−t) = 0 (3.95)

and, likewise, 〈Ê (−)
RR, j (r, t)F̂ (+)

j (r, t ′)〉 ∼= 0, 〈F̂ (−)
j (r, t)Ê (+)

RR,k(r, t ′)〉 ∼= 0 under
the assumption that the detector atom is only weakly perturbed by the external
field. Thence,

〈 ˙̂σz(t)〉 ∼= 4
2 d j dkθ

(
t − r

c

)
Re

∫ t

r/c
dt ′ 〈F̂ (−)

j (r, t)F̂ (+)
j (r, t ′)〉eiω0(t ′−t). (3.96)

There are three points worth stressing about the simple result (3.96). The
first is that the appearance of the step function θ(t − r/c) is exact, i.e. the
influence of the external field on the atom is properly causal independently
of the approximations made in going from the exact expression (3.82) to
the approximation (3.96). Second, the appearance of a normally ordered
field correlation function is an approximation—the consequence of considering
‘energy-conserving’ transitions at times t & ω−1

0 long enough for the detector
transition frequency to be resolvable in the sense of the energy–time uncertainty
relation. Finally, we note that it is important, for the purpose of exhibiting
causality, to include the step function θ(t − r/c) explicitly in equation (3.85)
before making the approximation leading to the normally ordered field correlation
function: without the step function, the result (3.96) for the excitation rate in
second-order perturbation theory is not manifestly causal, for the positive- and
negative-frequency parts of the field are themselves not retarded, as already noted.
These points carry over to the case of a more realistic model for a photodetector
which we now consider.

For a system with a ground-state energy Eg and a manifold of excited states
{Ea}, (3.96) generalizes to the following expression for the rate Ṗ(t) [= 1

2 〈 ˙̂σ z(t)〉]
at which electrons make transitions out of the ground state:

Ṗ(t) ∼= 2
2

∑

a

dag, j dga,k R(a)θ
(

t − r
c

)

× Re
∫ t

r/c
dt ′ 〈F̂ (−)

j (r, t)F̂ (+)
k (r, t ′)〉eiωag(t ′−t) (3.97)

where ωag = (Ea − Eg)/ and R(a) gives the probability, which will depend on
the physical characteristics of the detector, of actually counting a photoelectron
of energy Ea . Following Glauber [90], we define a sensitivity function

s jk(ω) ≡ 2π
1
2

∑

a

R(a)dag, jdga,kδ(ω − ωag) (3.98)
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in terms of which

Ṗ(t) ∼= θ
(

t − r
c

) 2
2π

Re
∫ t

r/c
dt ′ 〈F̂ (−)

j (r, t)F̂ (+)
k (r, t ′)〉

∫ ∞

−∞
dω s jk(ω)eiω(t ′−t).

(3.99)
Two approximations have been made in the derivation of (3.99): (1) the

replacement of 〈σ̂z(t ′)〉 by its initial value 〈σ̂z(0)〉, amounting to standard second-
order perturbation theory for the calculation of absorption rates; and (2) the
restriction to energy-conserving transitions implicit in the assumption t ' ω−1

0
made in the two-state formulation. Except for the appearance of the step function
θ(t − r/c) and the time r/c appearing as the lower limit of integration in (3.99),
our result is essentially identical to that of Glauber. He defines an ideal broadband
detector such that s jk(ω) ∼= constant ≡ s jk for all frequencies ω (or actually for
all frequencies within the bandwidth of the external field), so that

∫ ∞

−∞
dω s jk(ω)eiω(t ′−t) = 2πs jkδ(t ′ − t) (3.100)

and
Ṗ(t) ∼= θ

(
t − r

c

)
s jk〈F̂ (−)

j (r, t)F̂ (+)
k (r, t)〉. (3.101)

3.2.1 Causality

As already noted, the appearance of the step function θ(t − r/c) in (3.96)–(3.99)
is exact. Moreover, this causal feature is implicit in the original formulation by
Glauber [89,90], since he begins with the full electric field operator and proceeds

to normally ordered field correlation functions involving Ê
(±)

under the condition
of energy-conserving transitions. In other words, properly retarded effects of the
external field on the detector responding to it are implicit in the Glauber theory,
although, as a practical matter, one simply writes expressions such as

Ṗ(t) ∼= s jk〈F̂ (−)
j (r, t)F̂ (+)

k (r, t)〉 (3.102)

instead of (3.101) and similarly for higher-order correlation functions.
This contradicts the claim by Bykov and Tatarskii [95, 96] that the Glauber

theory violates causality. Their claim is based on the presumption that the photon-
counting rate, for instance, fundamentally involves (3.102) rather than (3.101)
and, therefore, that causality is violated owing to the non-retarded character of
F(±)(r, t). As we have shown, causality in the sense meant in this context is
trivially implicit in the Glauber theory, beginning as it does with the full, properly
retarded electric field. Normally ordered field correlation functions appear at
a later stage in the theory and follow from a long-time ‘energy conservation’
approximation much the same as in the derivation of Fermi’s golden rule.

The putative violation of causality, according to Bykov and Tatarskii [95,
96], ‘requires changing the determination of the correlation functions and, in
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particular, the velocity of photocounting’. They suggest the replacement of
(3.102), for instance, by

ṖBT(t) = s jk〈: ÊS, j (r, t)ÊS,k(r, t) :〉 (3.103)

where the colons denote normal ordering. The full external field operator ES(r, t)
is employed in order to guarantee causality which, as we have shown, is, in
fact, already implicit in the conventional theory. The normal ordering of the
field product in (3.103) is employed ‘to avoid an infinite contribution of vacuum
fluctuations’.

The replacement of (3.82) by (3.89) involves a rotating-wave approximation
(RWA), i.e. the approximation of dropping energy-non-conserving terms, which,
of course, is not an essential part of the standard theory. Retention of non-RWA
terms leads to expressions such as

Ṗ(t) = s jk〈ÊS, j (r, t)ÊS,k(r, t)〉 (3.104)

which differs from (3.103) in that it includes an antinormally ordered
term 〈Ê (+)

s, j (r, t)Ê (−)
s,k (r, t)〉. This term does not arise in a formulation of

photodetection theory that accounts for dissipation as well as fluctuations in
the response of the detector [85]. In other words, the modification of standard
photon-counting theory suggested by Bykov and Tatarskii, stemming from the
presumption that the standard theory violates causality, amounts only to dropping
the RWA, and does not lead to anything essentially new.

The ab initio use of the RWA in the Hamiltonian is, thus, seen to be the
basis in effect not only of Hegerfeldt’s criticism of previous work on the Fermi
model but also the criticism of the Glauber theory of photodetection by Bykov
and Tatarskii. To underscore this point, recall that the restriction to energy-
conserving processes in the Fermi model means that the terms âkλσ̂ and â†

kλσ̂
†

in the Hamiltonian are ignored. To wit, the interaction term in the Hamiltonian
(3.11) is effectively replaced by

Ĥ (RWA)
Int = −i

∑

j=A,B

∑

kλ

[C j kλσ̂
†
j âkλ − C∗

j kλâ†
kλσ̂ j ]. (3.105)

If we take (3.78) to be the positive-frequency part of the field, this can be written
as

Ĥ (RWA)
Int = −

∑

j=A,B

[σ̂ †
j (t)d j · Ê

(+)
(r j , t) + d j · Ê

(−)
(r j , t)σ̂ j (t)]. (3.106)

With such an interaction, we obviously do not obtain (3.82) but rather an

expression involving the non-retarded fields Ê
(±)

(r, t), each of which involves∫ ∞
0 dω(. . .) rather than

∫ ∞
−∞ dω(. . .). In neither the Fermi model nor our model

for photodetection is there any violation of causality when one works from
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the start with the complete (non-RWA) Hamiltonian including the possibility of
energy-non-conserving (virtual) transitions.

Our derivation of Ṗ(t) has led to normal ordering as a consequence of the
RWA. If we proceed directly from the two-state result (3.82) to its multilevel
generalization without any RWA, we obtain instead of (3.97)

Ṗ(t) ∼= 2
2

∑

a

dag, jdga,k R(a) Re
∫ t

r/c
dt ′ 〈Ê j (r, t)Êk(r, t ′)〉eiωag(t ′−t)

= 2
2π

Re
∫ t

r/c
dt ′ 〈Ê j (r, t)Êk(r, t ′)〉

∫ ∞

−∞
dω s jk(ω)eiω(t ′−t)

→ s jk〈Ê j (r, t)Êk(r, t)〉 (3.107)

where, in the last step, we have gone to the limit of ideal broadband detection.
Bykov and Tatarskii introduce normal ordering as in (3.103) to eliminate from
(3.107) the infinite quantity 〈Ê (+)

j (r, t)Ê (−)
k (r, t)〉, the infinity arising from the

vacuum field Ê0, j (r, t).
Care must be exercised in applying the non–RWA expression (3.107). For

one thing, the vacuum field has an infinite bandwidth and, therefore, the limit of
idealized broadband detection is inapplicable. Just as important is the fact that, in
dealing with vacuum field contributions, we cannot, in general, ignore radiation
reaction, i.e. we cannot completely separate the vacuum fluctuations driving the
detector from its own internal dissipation [8]. Indeed equation (3.107) as it stands
does not distinguish among the vacuum, radiation reaction, or external fields
due to the sources causing the photoabsorption. By proceeding more carefully
to an expression for the absorption rate without any RWA, and accounting for
radiation reaction, it has been shown that the infinite term that Bykov and
Tatarskii propose to eliminate by normal ordering is present even with normal
ordering and, moreover, is present regardless of what ordering is employed [85].
More importantly, the term in question has been shown to be without physical
significance for photodetection [85].

It is straightforward to generalize the preceding results for photon-counting
theory to higher-order field correlation functions. For the rate at which photons
are counted jointly at two identical broadband detectors at (r1, t1) and (r2, t2),
for instance, we obtain

R(r1, t1; r2, t2) = s jmsk#θ
(

t1 − r1

c

)
θ

(
t2 − r2

c

)
〈Ê (−)

j (r1, t1)Ê (−)
k (r2, t2)

× Ê (+)
# (r2, t2)Ê (+)

m (r1, t1)〉 (3.108)

where r1 and r2 are the distances from the (point) source to r1 and r2. Once
again causality is manifested explicitly in the appearance of the step functions
θ(t j − r j/c). The RWA has been employed in writing this result and again it is
the RWA that leads naturally to a normally ordered field correlation function.
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To summarize: the RWA can lead to apparent violations of ‘causality’,
i.e. retardation, in theoretical analyses involving the propagation of light. Such
violations are artificial and are eliminated by working from the start with a
Hamiltonian that accounts for non-RWA terms associated primarily with virtual
transitions and level shifts. Causality is implicit in the standard photodetection
theory as originally formulated by Glauber. The non-RWA contributions obtained
by Bykov and Tatarskii are, in principle, already contained in the standard theory.

Our results concerning the RWA are not inconsistent with those of De
Haan [82] or Compagno et al [83]. The latter authors, for instance, show
that if non-RWA, ‘energy-non-conserving’ terms are dropped at the outset
from the Hamiltonian, then the field operators calculated from the approximate
Hamiltonian are not retarded. Our use of the term ‘RWA’ here is somewhat
different in that it refers to the omission of counter-rotating terms only after
calculating the field based on the full Hamiltonian including energy-non-
conserving terms. In other words, the neglect of counter-rotating terms is
simply made at a later point in the calculation. Regardless of the point
in the calculations where counter-rotating terms are dropped, such terms are
fundamentally necessary in our approach, as in the work of De Haan and
Compagno et al, for the formal demonstration of causality. We have followed an
approach that arguably shows most clearly how a trivial modification of standard
photodetection theory exhibits its correctly causal character.

3.3 Microscopic approach to refractive index and group
velocity

In the Fermi model, it is assumed that the two atoms are in free space, and, in
the model for photodetection just discussed, the light is assumed to propagate
in vacuum to the detector. We now consider a model in which the light from
an initially excited atom propagates in a dielectric medium to a detector [97].
Under certain approximations, the primary one being that the atoms constituting
the dielectric stay with high probability in their ground states, this model can
be solved essentially exactly. Such a model is conceptually attractive for our
purposes because: (1) it is completely quantum-mechanical; (2) the total electric
field operator due to the source atom and all the atoms of the medium is obtained
self-consistently; (3) it is shown that the radiation from the source atom can
register a ‘click’ at the detector sooner, on average, than it could if there were
no medium between the source atom and the detector, i.e. there is an observable
‘superluminal’ effect; and (4) the classical theorem that the front velocity cannot
exceed c has a simple quantum counterpart.

The source atom has transition frequency and electric dipole moment ω0 and
d , respectively, and is located at a point (r = 0) outside the dielectric. There are
NT identical atoms making up the dielectric. They have transition frequency ωd
and transition dipole moment µ, respectively, and are located at points r j . All
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the atoms are coupled to the quantized electromagnetic field in the electric dipole
approximation. The Hamiltonian is

H = 1
2

ω0σ̂z +
NT∑

j=1

1
2

ωdσ̂z j +
∑

kλ

ωk â†
kλâkλ − i

d
µ

∑

kλ

Dkλ[âkλ − â†
kλ]σ̂x

− i
NT∑

j=1

∑

kλ

Dkλ[âkλeik·r j − â†
kλe−ik·r j ]σ̂x j . (3.109)

The coupling constant Dkλ = µ(ωk/2ε0 V )1/2, where V is again the
quantization volume.

It will be convenient for our purposes to simplify the model by restricting
the field modes to plane waves propagating along a single (z) direction and with
a single polarization, so that k,λ → k. (In reality, of course, the field from
the source atom will have a dipole radiation pattern. This can be dealt with easily
enough [10] but it only complicates the results without affecting our conclusions.)
Then, using the formal solution of the Heisenberg equation of motion for the field
operators âk(t), we obtain

Ê(z, t) = i
∑

k

(
ωk

2ε0V

)1/2

âk(t)eiωk z/c + h.c.

= Ê (+)
0 (z, t) + i

∑

k

(
dωk

2ε0V

)
eikz

∫ t

0
dt ′ σ̂x (t ′)eiωk(t ′−t)

+ i
∑

k

NT∑

j=1

(
µωk

2ε0V

)
eik(z−z j )

∫ t

0
dt ′ σ̂x j (t ′)eiωk(t ′−t) + h.c. (3.110)

Ê (+)
0 (z, t) = i

∑

k

(
ωk

2ε0V

)1/2

âk(0)e−i(ωk t−kz) (3.111)

for the electric field operator at any point z. Now the sum over field modes

2Re
[

i
∑

k

(
ωk

2ε0V

)
eikzeiωk(t ′−t)

]
→ Re

i
AL

L
4πε0c

∫ ∞

−∞
dω (2πω)eiω(t ′−t+z/c)

= 1
2ε0 Ac

∂

∂ t ′
δ(t ′ − t + z/c) (3.112)

where A is the cross-sectional area of our quantization volume V = AL, which
we have allowed to become infinite by taking L → ∞. Thus, for z > 0,

Ê(z, t) = Ê0(z, t) − d
2ε0 Ac

˙̂σ x(t − z/c)θ(t − z/c)

− µ

2ε0 Ac

∑

j

˙̂σ x j

(
t − |z − z j |

c

)
θ

(
t − |z − z j |

c

)
. (3.113)
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It is convenient to work with Fourier-transformed operators defined by
writing

Ê(z, t) =
∫ ∞

−∞
dω

˜̂E(z,ω)e−iωt (3.114)

σ̂x (t) =
∫ ∞

−∞
dω ˜̂σ x (ω)e−iωt (3.115)

σ̂x j (t) =
∫ ∞

−∞
dω ˜̂σ x j (ω)e−iωt . (3.116)

Then equation (3.113) implies

˜̂E(z,ω) = ˜̂E0(z,ω) + id
2ε0 Ac

ωeiωz/c ˜̂σ x (ω) + iµ
2ε0 Ac

ω
∑

j

eiω|z−z j |/c ˜̂σ x j (ω)

≡ F̂(z,ω) + iµ
2ε0 Ac

ω
∑

j

˜̂σ x j (ω)eiω|z−z j |/c

→ F̂(z,ω) + iµ
ω

2ε0c
N

∫ ∞

z0

dz′ ˜̂σ x(z′,ω)eiω|z−z′|/c (3.117)

where the atoms of the dielectric are assumed to be uniformly distributed with
density N and to occupy the half-space z > z0.

From the Hamiltonian (3.109), it follows from the Heisenberg equations of
motion and the commutation relations for the two-state operators that the σ̂x j ’s
satisfy

¨̂σ x j + 2γ ˙̂σ x j + ω2
µσ̂x j = − µωd

2ε0
Ê(z j , t)σ̂z j ∼= µωd

2ε0
Ê(z j , t) (3.118)

where, in the last step, we have replaced the operator σ̂z j by −1 under the
assumption that the atoms making up the dielectric remain with high probability
in their ground states. 2γ is the rate of spontaneous emission of the dielectric
atoms, which, in the present model, undergo no other relaxation. Equation (3.118)
implies

µ ˜̂σ x (z′,ω) = α(ω)
˜̂E(z′,ω) (3.119)

for the induced dipole moment at frequency ω, where

α(ω) = µ2ωd/2ε0

ω2
d − ω2 − 2iγω

(3.120)

is the polarizability. Then

˜̂E(z,ω) = f̂ (ω)eiωz/c + i
ω

2ε0c
Nα(ω)

∫ z

z0

dz′ ˜̂E(z′,ω)eiω(z−z′)/c

+ i
ω

2ε0c
Nα(ω)

∫ ∞

z
dz′ ˜̂E(z′,ω)eiω(z′−z)/c (3.121)
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where we have written F̂(z,ω) as f̂ (ω)eiωz/c. This integral equation is basically
just a statement of the superposition principle: the total electric field at any point
in the medium is the sum of the vacuum field, the field from the source atom, and
the field from all the dipoles in the medium, these dipoles being induced by the
same total electric field. To solve this equation, we write

˜̂E(z,ω) = ĝ(ω)ein(ω)ωz/c (3.122)

and determine ĝ(ω) and n(ω) by substitution. The result of the algebra is

˜̂E(z,ω) = 2
n(ω) + 1

f̂ (ω)ein(ω)(z−z0)ω/ceiωz0/c (3.123)

for z > z0, where n(ω) is the complex refractive index: n2(ω) = 1+(N/ε0)α(ω).
Combining these results, we obtain the following expression for the electric

field operator at (z, t) inside the medium:

Ê(z, t) = Ê0(z, t) + id
2ε0 Ac

∫ ∞

−∞
dt ′ σ̂x (t ′)

∫ ∞

−∞

dω ω

n(ω) + 1
eiω[t ′−t+n(ω)z/c]

(3.124)
where Ê0(z, t) is the source-free (vacuum) field inside the medium and, for
simplicity, we take z0 = 0 for the position of the initially excited source atom.

It may be worthwhile to note that, aside from the approximation that the
host atoms remain with probability one in their ground states, the expression
(3.124) is exact for the case of a dilute dielectric medium. We began with the
Hamiltonian (3.109) for the field and the atoms in vacuum and obtained (a) the
relation between the refractive index and the polarizability and (b) the electric
field operator (3.124), by solving exactly the self-consistent integral equation
(3.121).

Now the probability that the radiation from the source atom at z = 0 will
register a count at an ideal broadband detector at z > 0 at time t involves an
expectation value over the initial state |ψ〉 in which all the atoms of the dielectric
are in their ground states, the field is in the vacuum state, and the state of the
source atom is arbitrary. The photon-counting rate is proportional to

R(z, t) = 〈Ê (−)(z, t)Ê (+)(z, t)〉

=
∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′ 〈σ̂x (t ′)σ̂x (t ′′)〉

∫ ∞

−∞

dω ω

n∗(ω) + 1
e−iω[t ′−t+n∗(ω)z/c]

×
∫ ∞

−∞

dω′ ω′

n(ω′) + 1
eiω′[t ′′−t+n(ω′)z/c]. (3.125)

In terms of the two-state lowering and raising operators σ̂ and σ̂ †, respectively,

〈σ̂x (t ′)σ̂x (t ′′)〉 = 〈σ̂ (t ′)σ̂ (t ′′)〉 + 〈σ̂ †(t ′)σ̂ (t ′′)〉
+ 〈σ̂ (t ′)σ̂ †(t ′′)〉 + 〈σ̂ †(t ′)σ̂ †(t ′′)〉. (3.126)
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σ̂ (t) and σ̂ †(t) vary in time predominantly as e−iω0t and eiω0t , respectively.
Therefore, only the second term on the right-hand side of (3.126) will contribute
to (3.125) over the time scales of interest (i.e. ‘energy-conserving’ times, long
compared with 1/ω0). The rate at which radiation emitted by the source atom will
register counts at the detector at z is, therefore, proportional in this approximation
to

R(z, t) =
∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′ 〈σ̂ †(t ′)σ̂ (t ′′)〉

∫ ∞

−∞

dω ω

n∗(ω) + 1
e−iω[t ′−t+n∗(ω)z/c]

×
∫ ∞

−∞

dω′ ω′

n(ω′) + 1
eiω′[t ′′−t+n(ω′)z/c]. (3.127)

Suppose the source atom is excited by a time-dependent mechanism, e.g.
by a resonant laser pulse Ê(t) = Re[F̂0(t) exp(−iω0t)]. If the Rabi frequency
is small compared with the radiative decay rate and the pulse duration is long
compared with the radiative lifetime, then

〈σ̂ †(t ′)σ̂ (t ′′)〉 ∝ 〈F̂0(t ′)F̂0(t ′′)〉eiω0(t ′−t ′′) = f0(t ′) f ∗
0 (t ′′)eiω0(t ′−t ′′) (3.128)

and

R(z, t) ∝
∣∣∣∣

∫ ∞

−∞
dt ′ e−iω0t ′ f0(t ′)

∫ ∞

−∞

dω ω

n(ω) + 1
eiω[t ′−t+n(ω)z/c]

∣∣∣∣
2

∝
∣∣∣∣

∫ ∞

−∞
dt ′ a(t ′)

∫ ∞

−∞

dω ω

n(ω) + 1
eiω[t ′−t+n(ω)z/c]

∣∣∣∣
2

(3.129)

where a(t) is the probability amplitude that the source atom is in the upper state
at time t and we have assumed that the source atom is initially in the lower state
[σ̂ (−∞)|ψ〉 = 0]. If F̂0(t) = Ĉ exp(−t2/2τ 2), for instance,

R(z, t) ∝
∣∣∣∣

∫ ∞

−∞

dω ω

n(ω) + 1
e−iωt eiωn(ω)z/ce− 1

2 (ω−ω0)2τ 2
∣∣∣∣
2

. (3.130)

Except for the factor ω/[n(ω) + 1], the integral here is the same as that appearing
in the work of Garrett and McCumber [37] discussed in section 2.3.

The main contribution to the integral over t ′ in equation (3.129) comes from
frequencies ω near ω0. Write n(ω) = nR(ω) + inI(ω), where nR(ω) and nI(ω)

are real. Then
∫ ∞

−∞
dt ′ f0(t ′)

∫ ∞

−∞

dω ω

n(ω) + 1
ei(ω−ω0)t ′e−iω[t−n(ω)z/c]

≈ ω0

n(ω0) + 1
e−ω0nI(ω0)z/c

∫ ∞

−∞
dt ′ f0(t ′)e−iω0t ′

∫ ∞

−∞
dω eiω[t ′−t+nR(ω)z/c]

(3.131)
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and the double integral is approximately
∫ ∞

−∞
dt ′ f0(t ′)e−iω0t ′

∫ ∞

−∞
d" ei(ω0+")(t ′−t)ei(ω0+")[nR(ω0)+"n′

R(ω0)]z/c

≈ e−iω0[t−nR(ω0)z/c]
∫ ∞

−∞
dt ′ f0(t ′)

∫ ∞

−∞
d" ei"(t ′−t)ei"[nR(ω0)+ω0n′

R(ω0)]z/c

= 2πe−iω0[t−nR(ω0)z/c] f0(t − z/vg) (3.132)

where vg = c/[d(ωnR)/dω]ω=ω0 is the group velocity and it is assumed that
group velocity dispersion is negligible. Then, from (3.129),

R(z, t) ∝ e−2ω0nI(ω0)z/c P(t − z/vg) (3.133)

where P(t) = |a(t)|2 is the probability at time t that the source atom is excited.
If the group velocity exceeds c near the resonance frequency of the absorbing

medium, the result (3.133) implies that the peak probability that a single photon
is counted at z can occur sooner than it could if there were no medium between
the source atom and the detector, albeit the probability that the photon is counted
is reduced by the factor exp(−αz), where α = 2ω0nI(ω0)/c is the absorption
coefficient. Note also that the argument t − z/vg does not have to be positive,
nor does t − z/c have to be positive in the limiting case where the medium
of propagation is the vacuum: because of our assumption that the pumping
mechanism for exciting the atom is on at all times, there is a finite probability
at all times that a photon count will be recorded at the detector. However, if a
peak excitation probability for the atom occurs at time T , say, then the photon-
counting rate corresponding to this peak will itself peak at time T + z/vg when
the photon propagates in the medium, compared with the later time T + z/c at
which it would peak were it propagating in vacuum.

Consider instead the case where the source atom is suddenly put in its excited
state at t = 0, having been in its lower state prior to that time. Then, since the
lowering operator σ̂ (t ′′) acting on the lower state gives 0 for all times t ′′ earlier
than t = 0, we can replace (3.127) by

R(z, t) =
∫ ∞

−∞
dt ′

∫ ∞

0
dt ′′ 〈σ̂ †(t ′)σ̂ (t ′′)〉

∫ ∞

−∞

dω ω

n∗(ω) + 1
e−iω[t ′−t+n∗(ω)z/c]

×
∫ ∞

−∞

dω′ ω′

n(ω′) + 1
eiω′[t ′′−t+n(ω′)z/c]. (3.134)

For our purposes, we need only observe a general property of the last integral.
Namely, since n(ω′) + 1 only has poles in the lower half of the complex ω′ plane,
and n(ω′) → 1 as ω′ → ∞, the integral over ω′ has to vanish unless t > t ′′ +z/c.
Consequently, since the integration over t ′′ starts at t ′′ = 0, P(z, t) vanishes
unless t > z/c. In other words, a suddenly excited atom cannot cause a photon to
be counted at z before the time it takes for light to propagate in vacuum from the
atom to the detector.
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This is the analog of the classical result that a sharp wavefront cannot
propagate faster than c. In our quantum-mechanical model, however, we cannot
create a sharp ‘front’ of photon probability because the radiative lifetime of
the excited state is finite and the emitted radiation must have a finite spectral
width. And, of course, the emitted ‘pulse’ in our model represents a probability
distribution for finding a single photon. Nevertheless, the limiting case of an atom
excited by a delta-function pulse, and with a very short radiative lifetime, provides
a quantum analog of the idealized sharp classical wavefront. Our result is then
analogous to the classical Sommerfeld–Brillouin proof of Einstein causality, i.e.
the proof that the front velocity cannot exceed c.

Regarding the model employed here, we note that the assumption that the
atoms of the dielectric remain with high probability in the ground state renders
our treatment of propagation very similar to a purely classical one. Our treatment
of the source atom, of course, is completely quantum mechanical. It might also
be noted that the spontaneous emission rate of the source atom is modified by the
presence of the dielectric and can, in general, be either greater than or smaller
than the free-space spontaneous emission rate8.

3.4 EPR correlations and causality

A quantum field φ̂(r, t) can create or annihilate particles when it acts on a state
|ψ〉. If c2(t − t ′)2 − (r − r ′)2 < 0, the creation and annihilation events at
(r, t) and (r ′, t ′) should not affect one another. Thus, φ̂(r, t)φ̂(r ′, t ′)|ψ〉 =
φ̂(r ′, t ′)φ̂(r, t)|ψ〉, i.e. the commutator [φ̂(r, t), φ̂(r ′, t ′)] = 0 for spacelike
separations9.

Any physical process that would violate this condition would be inconsistent
with causality and must, therefore, be forbidden. Obviously, this is a rather
formal condition and, as in the classical case, it is instructive to consider explicit
examples where the requirement of causality puts constraints on what physical
processes are possible.

Part of the mystique surrounding Einstein–Podolsky–Rosen (EPR)
correlations stems from what Einstein [100] famously called the ‘spooky action
at a distance’ they seem to imply10. Consider the example of two photons in the

8 For recent work on the modification of the spontaneous emission rate of an atom in a dielectric,
see [98] and the papers cited therein.
9 Related commutation relations for the free electromagnetic field were used by Bohr and Rosenfeld
in several (difficult) papers in which they considered among other things the role of the finite velocity
of light in field measurements involving two test bodies; see [99] and the papers cited therein.
They showed that the quantum-mechanical uncertainty relations for the test bodies imply uncertainty
relations for the field that are just those derivable from the field commutation relations.
10 In this connection it is frequently said, especially in the popular media, that Einstein would not
have expected the experimental results supporting Bell’s theorem. A different view is expressed in the
appendix to this chapter.
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‘entangled’ polarization state

|!〉 = 1√
2
(|HA〉|VB〉 − |VA〉|HB〉) (3.135)

where H and V denote ‘horizontal’ and ‘vertical’ polarization. Alice and
Bob each observe one member of the photon pair: if Alice measures H (V )
polarization, then the state of Bob’s photon is immediately reduced to V (H ). This
sort of ‘action at a distance’ cannot be used for instantaneous communication of
information, or signalling, simply because Alice cannot choose whether to ‘send’
a V or an H to Bob; she has a 50/50 chance of getting an H or a V herself.

She does, of course, have a choice as to polarization basis. She can, for
example, use the circular polarization states |R〉 = (1/

√
2)(|H 〉 − i|V 〉) and

|L〉 = −(1/
√

2)(|H 〉 + i|V 〉) instead of |H 〉 and |V 〉. In this basis, we can write
the state (3.135) equivalently as

|!〉 = 1√
2
(|RA〉|RB〉 − |L A〉|L B〉). (3.136)

Thus, if Alice chooses to work in the H, V basis, her measurement reduces Bob’s
photon state to V or H , whereas if she chooses to work in the R, L basis, her
measurement reduces Bob’s photon state to R or L. However, her choice of basis
cannot serve to send information to Bob because, given a single photon, Bob
cannot distinguish between linear or circular polarization. That is, there is no
device that can measure the polarization parameters of a single photon [101]. If
such a device were possible, EPR correlations could be used for superluminal
(instantaneous) communication.

Consider, alternatively, the density matrix ρB describing Bob’s photon.
Tracing over Alice’s states, we obtain

ρB = TrA[|!〉〈!|] = (1/2(|HB〉〈HB | + |VB〉〈VB |) (3.137)

in the H, V basis and

ρB = (1/2)(|RB〉〈RB | + |L B〉〈L B |) (3.138)

in the R, L basis. These are just different ways of writing the same (reduced)
density matrix, and so Alice’s choice of whether to measure linear or circular
polarization cannot affect Bob’s measurements and, therefore, cannot be used to
transmit information.

3.5 No cloning

But if Bob has many particles in the same state he can perform measurements
to determine that state. For example, he can let N (% 1) photons pass through
polarization-dependent beam splitters and thereby determine with a high degree
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of accuracy whether a measurement of linear or circular polarization was made on
Alice’s EPR-correlated photon. In other words, if the single photon at Bob’s end
can be sent through an amplifier to produce a large number of photons in the same
(arbitrary) state, it would be possible for Alice to communicate superluminally to
Bob whether she measured linear or circular polarization [102].

This superluminal communication scheme fails because photons cannot be
perfectly copied: the amplifier will produce photons with polarization different
from the incident photon by spontaneous emission—we cannot have stimulated
emission without spontaneous emission and, therefore, we cannot amplify an
arbitrary polarization [103]. Much more generally, quantum theory does not
permit the cloning of a single quantum [104, 105].

It is worth noting that this conclusion does not require that an optical
amplifier be polarization-dependent. It is possible for an amplifier to produce
a final state that is independent of the polarization of the incident photon but
such an amplifier does not violate the no-cloning theorem: ‘the essential element
that prevents cloning is here seen to be spontaneous emission, rather than any
dependence of amplifier gain on polarization’ [106]. Note also that suppression
of spontaneous emission by cavity QED or other methods will not help, since
stimulated emission will be likewise suppressed.

A proof of the no-cloning theorem goes as follows [104]. Suppose there is
an amplifier that transforms a polarization state |s〉 of a photon into a state |ss〉 in
which there are two photons in the same state, i.e. the amplifier clones a photon.
Thus, A0〉|s〉 → |As〉|ss〉, where |A0〉 and |As〉 are, respectively, the initial and
final states of the amplifier. In particular, for vertically and horizontally polarized
photons,

|A0〉|V 〉 → |AV 〉|V V 〉 (3.139)

|A0〉|H 〉 → |AH 〉|H H 〉 (3.140)

and, according to quantum theory, such transformations are linear, so that

|A0〉[α|V 〉 + β|H 〉] → α|AV 〉|V V 〉 + β|AH 〉|H H 〉 (3.141)

for an arbitrary superposition state α|V 〉 + β|H 〉 of the original photon. But,
with our hypothetical cloning device, the transformed polarization state should be
that in which both photons are described by the polarization state α|V 〉 + β|H 〉
and this state cannot be described by (3.141), regardless of the possible final
states |AH 〉 and |AV 〉 of the amplifier. Simply put, if two states can be cloned,
a superposition of them cannot. The linearity of quantum theory, therefore,
precludes the replication of an arbitrary polarization state and, obviously, this
conclusion follows regardless of the specific quantum system: a single quantum
cannot be cloned [104].

The word ‘arbitrary’ here is crucial. If, for instance, we know beforehand
that the photon we want to clone is right-hand circularly polarized (RHC), we
could prepare the atoms of a laser amplifier by optical pumping so that they radiate
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only RHC photons by stimulated and spontaneous emission. But, for an arbitrary
initial state, this cannot be done because we have no a priori information to tell
us how to prepare the amplifier and spontaneous emission is as likely as not to
produce an additional photon in a polarization state that is orthogonal to that we
wish to clone.

Glauber [107] has discussed the impossibility of superluminal communica-
tion using laser amplifiers and has shown that amplification does not allow Bob
to ascertain whether Alice measures linear or circular polarization. In connec-
tion with the no-cloning theorem, he remarks that the proof just reviewed ‘takes
the definition of cloning quite literally, requiring all photons to be identical, and
places the further restriction that the initially pure one-photon state has to always
remain pure. It is not related, therefore, to the action of any real amplifier.’

Recall that the probability of stimulated emission into a given mode is q
times the probability of spontaneous emission into that mode, where q is the
expectation value of the photon number. For cloning one member of an EPR
pair, q = 1 and stimulated emission is as likely as spontaneous emission. It is,
therefore, more likely than not that the incoming photon is replicated: stimulated
emission will produce a photon with the same polarization as the incoming photon
and spontaneous emission is as likely to produce a photon with that polarization as
it is to produce an orthogonally polarized photon. There is, therefore, a probability
of 2/3 that the additional photon has the same polarization as the incoming photon.
The cloning fidelity is defined as the probability that an outgoing photon is in
the same state as the incoming photon:

= 2
3 × 1 + 1

3 × 1
2 = 5

6 . (3.142)

Imperfect quantum cloning i.e. cloning with fidelity < 1, has been of interest
in connection with quantum information studies. In the present context, it is
worth noting that Gisin [108] has obtained a bound on the fidelity of quantum
cloning by imposing the requirement of no superluminal communication and
finds that the maximum allowed fidelity is equal to the optimal quantum cloning
fidelity (3.142) obtained by Buz̆ek and Hillery [109]11. The fidelity (3.142) is
exactly the maximum fidelity that is possible without violating Einstein causality.
Gisin notes: ‘[O]nce again, quantum mechanics is right at the border line of
contradicting relativity, but does not cross it’.

It is also noteworthy that the optimal fidelity (3.142) has been closely
approximated in parametric down-conversion experiments (section 2.4.3) [110].
In these experiments, loosely speaking, incident photons from a laser are split
in a nonlinear crystal into two photons that are polarization-correlated [111].
The process occurs spontaneously if there are no incident photons in either of
the modes of the down-converted photons; otherwise the down-conversion can
11 Gisin’s proof is straightforward but rather technical. The basic idea is that, for superluminal
signalling to be impossible, indistinguishable density matrices [such as (3.137) and (3.138)] should
remain indistinguishable after (imperfect) cloning. This sets an upper limit on the cloning fidelity that
is possible without violating the ‘no signalling’ criterion.
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be stimulated. The spontaneous and stimulated down-conversion processes are
much like the spontaneous and stimulated emission in the case of excited atoms
and, again, it is the spontaneous process that limits the cloning fidelity.

3.5.1 Teleportation

While quantum theory forbids (perfect) cloning, it does allow Alice to ‘teleport’
an exact quantum state to Bob. Such teleportation is not inconsistent with the
no-cloning theorem because the original state is destroyed in the process, which
does not produce twin states. Here we will briefly review teleportation [112] and
explain why it cannot be done superluminally.

Using the H, V basis, we write the (arbitrary) polarization state of Alice’s
photon (labelled as ‘1’) as

|ψ1〉 = a|H 〉1 + b|V 〉1. (3.143)

Teleportation of this state involves the use two EPR-correlated photons, photon
‘2’ directed to Alice and photon ‘3’ to Bob. These ‘shared’ photons are described
by the state

|ψ23〉 = 1√
2
(|H 〉2|V 〉3 − |V 〉2|H 〉3. (3.144)

The ‘Bell basis’ for the two photons 1 and 2 consists of the four states

|ψ(A)
12 〉 = 1

√
2(|H 〉1|H 〉2 + |V 〉1|V 〉2)

|ψ(B)
12 〉 = 1

√
2(|H 〉1|H 〉2 − |V 〉1|V 〉2)

|ψ(C)
12 〉 = 1

√
2(|H 〉1|V 〉2 + |V 〉1|H 〉2)

|ψ(D)
12 〉 = 1

√
2(|H 〉1|V 〉2 − |V 〉1|H 〉2). (3.145)

Using this basis, the three-photon state |ψ123〉 = |ψ1〉|ψ23〉 can be written as

|ψ123〉 = 1
2 |ψ(A)

12 〉 ∗ (−b|H 〉3 + a|V 〉3) + 1
2 |ψ(B)

12 〉 ∗ (b|H 〉3 + a|V 〉3)

+ 1
2 |ψ(C)

12 〉 ∗ (−a|H 〉3 + b|V 〉3) + 1
2 |ψ(D)

12 〉 ∗ (−a|H 〉3 − b|V 〉3).

(3.146)

The teleportation process begins with Alice making a ‘Bell measurement’ on
the two photons (1 and 2) available to her. This collapses the state |ψ123〉 to one of
the Bell components. Then Alice signals Bob to tell him which component. What
Bob then does is perform a unitary transformation, according to the teleportation
table 3.1, on the photon 3 he has received. Inspection of table 3.1 shows that, after
Bob’s unitary transformation, photon 3 is in the state |ψ3〉 = a|H 〉1 + b|V 〉1, the
same as the original state of photon 1. In other words, the state of Alice’s photon
has been teleported to Bob. Alice and Bob can be separated by a large distance but
there is no superluminal transmission of information between them because Alice
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Table 3.1. Teleportation table. The σ ’s are Pauli matrices in the standard notation, and I
is the unit 2 × 2 matrix.

Alice’s Bell-state projection Bob’s unitary transformation

|ψ (A)
12 〉 iσy

|ψ (B)
12 〉 σx

|ψ (C)
12 〉 −σz

|ψ (D)
12 〉 −I

has to signal Bob by some means to tell him the result of her Bell measurement. In
the first experimental demonstration of high-fidelity quantum teleportation, Alice
and Bob were a metre apart [113].

3.6 A superluminal quantum Morse telegraph?

Another clever scheme for superluminal communication makes use of EPR
polarization-correlated photon pairs and a Michelson interferometer modified
such that one of the mirrors is replaced by a phase-conjugating mirror (PCM)
[114].

In contrast to an ordinary mirror, where circular (but not linear) polarization
is reversed by reflection, polarization does not change upon ‘reflection’ from
a PCM. It would seem, therefore, that, when one of the ordinary mirrors of
a Michelson interferometer is replaced by a PCM (figure 3.2), there will be
interference of the two propagation paths when the incident light is linearly
polarized but not when it is circularly polarized. (In the latter case, the fields
from the PCM and the ordinary mirror are orthogonally polarized and so do not
interfere.) With a steady stream of polarization-correlated EPR pairs, therefore,
an observer A would presumably be able to superluminally communicate to an
observer B, equipped with the PCM-modified Michelson interferometer, whether
she is measuring linear or circular polarization. This would allow what has been
called a ‘superluminal quantum Morse telegraph’, as discussed in more detail by
Garuccio [114].

The interference properties assumed for the PCM-modified Michelson
interferometer have, in fact, been verified experimentally for coherent laser fields
[115]. A simple calculation explains this observation. The positive-frequency
part of the electric field operator at the detector D (figure 3.2) can be written as
the sum of three terms. One term relates to the field that is incident on the beam
splitter from the left in figure 3.2 and that reflects off M before propagating to D.
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Figure 3.2. Experimental arrangement in which one photon of a polarization-correlated
EPR pair is incident upon a Michelson interferometer in which one of the mirrors (M) has
been replaced by a phase-conjugating mirror (PCM).

Denoting the polarization component i (i = 1, 2) of this field by E1i , we write

Ê (+)
1i =

2∑

j=1

αi j Â(+)
j (3.147)

where Â(+)
j is the positive-frequency part of the electric field operator associated

with the electric field of polarization j and the (complex) number αi j allows for
a possible polarization change of this field due to reflection, together with phase
changes due to propagation. Another contribution to the field at D arises from
reflection off the PCM. We denote this term by Ê (+)

2i and write

Ê (+)
2i =

2∑

j=1

βi j Â(−)
j (3.148)

βi j , like αi j , accounts for polarization and phase changes, while the hermitian
conjugation of the incident field Â(+)

j ( Â(−) = A(+)†) accounts for the effect of
the PCM, i.e. phase conjugation corresponds quantum mechanically to hermitian
conjugation. The third contribution (Ê (+)

3i ) to the field at D is made up of all
other modes, including fields incident on the PCM from the right (figure 3.2) and
propagating to D after reflection off the beam splitter.

The total positive-frequency part of the i th polarization component of the
field incident on D is Ê (+)

i = Ê (+)
1i + Ê (+)

2i + Ê (+)
3i and the normally ordered field

expectation value that determines the photon-counting rate of an ideal detector at
D is

〈Ê (−)
i Ê (+)

i 〉 =
2∑

j=1

2∑

k=1

[αi j α
∗
j k〈Â(−)

k Â(+)
j 〉 + α∗

ikβi j 〈Â(−)
k Â(−)

j 〉
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+ αi j β
∗
ik〈Â(+)

k Â(+)
j 〉 + β∗

ikβi j 〈Â(+)
k Â(−)

j 〉]. (3.149)

The first and last terms on the right-hand side of this equation obviously
arise from non-interfering paths to the detector. The last term accounts for
‘spontaneous radiation’ noise from the PCM [117, 118]. Only the second and
third terms account for any interference—but they vanish for any state of the
field with, at most, one photon and, in particular, when the field incident on
the interferometer shown in figure 3.2 is one member of an EPR pair. Thus,
the alternative paths to D never interfere, no matter what the polarization of the
incident photon and, as a consequence of this quantum property, the proposed
superluminal scheme fails.

Note that there is no contradiction with the experiments of Boyd et al [115]
in which interference was, in fact, observed for linearly polarized incident light
(but not for circularly polarized light) in the arrangement shown in figure 3.2. The
incident light in these experiments was from a laser and could be described by a
coherent state of the field, i.e. by an eigenket of the positive-frequency part of the
electric field operator. In this case, the second and third terms in (3.149) do not
necessarily vanish [see also [119]].

A heuristic semiclassical argument based on photon number–phase
complementarity can be invoked to explain the presence or absence of
interference: the interferometer in figure 3.2 cannot distinguish between circularly
and linearly polarized photons because interference depends on the phase of the
field, which is indefinite in the case of single photons. In the case of a coherent
state, however, the phase is not indefinite and interference is not precluded.

Note that, aside from the specific scheme of figure 3.2, it must, in general, be
impossible to have an apparatus that could locally determine the polarization state
of a photon, without making measurements on a (non-local) EPR partner. (More
generally, it must be impossible to determine the eigenstate of a single particle
locally.) Similarly, it must be impossible to have an apparatus that faithfully
preserves the polarization of a photon entering with (arbitrary) linear polarization
while reversing the helicity of a photon entering with circular polarization [120].
Otherwise, as examples such as these suggest, superluminal communication
would be possible.

Finally, we note that, in the case of an ordinary Michelson interferometer,
the expression (3.149) is replaced by

〈Ê (−)
i Ê (+)

i 〉 =
2∑

j=1

2∑

k=1

[αi j α
∗
j k + α∗

ikβi j + αi j β
∗
ik + β∗

ikβi j ]〈Â(−)
k Â(+)

j 〉 (3.150)

and a single photon can ‘interfere with itself’, independently of polarization.
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3.7 Mirror switching in cavity QED

The rate of spontaneous emission of an atom near a mirror or inside a cavity varies
with the position of the atom. This aspect of ‘cavity QED’ is well established
experimentally [121, 122]. Suppose we have a single excited atom at a position
where spontaneous emission is completely suppressed and that, at a time T , one
of the mirrors is suddenly replaced by a photodetector. Can a photon be counted
immediately at time T or is the photon count ideally zero until a time T ′ = T +TR,
where TR is a retardation time determined by the distance between the atom and
the detector that replaced the mirror?

There are two plausible predictions. According to one argument, the atom
cannot ‘know’ the mirror has been removed until the time t = T + D/c, where D
is the atom–mirror distance, and the atom can have a non-vanishing probability of
emitting a photon only after this time. Since the propagation time to the detector
is D/c, a photon can be detected only after a time t + D/c = T + 2D/c, i.e. after
a time 2D/c following the mirror ‘switchout’.

Alternatively, it can be argued that, as in the case of a classical dipole radiator
in a cavity, there are always fields (or, more precisely, probability amplitudes)
propagating from the atom to the removable mirror and back to the atom and that
the suppression of spontaneous emission implies a destructive interference of the
two counter-propagating fields. The sudden removal of the mirror allows the part
of the field propagating toward the mirror to escape from the cavity, so that a
photon can be counted immediately after the switchout of the mirror.

We will show that the second prediction is the correct one [123]. Because the
analysis of any real experiment will involve some complications that are irrelevant
to the question of interest, we will consider an idealized model. This model
consists of a two-state atom in the presence of a single plane mirror and an electric
dipole atom–field interaction restricted to polarized field modes propagating only
in the two directions normal to the mirror (figure 3.3) [124].

Figure 3.3. Two-state atom at z = z0 near a plane mirror at z = L . The field is restricted
to modes with k vectors parallel to the z-axis.
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The Heisenberg-picture electric field operator is Ê(z, t) = Ê0(z, t) +
Ês(z, t), where Ê0(z, t) is the free field in the absence of any sources and

Ês(z, t) = id
2ε0

∫ t

0
dt ′ [σ̂ (t ′) + σ̂ †(t ′)]

∑

k

ωkUk(z)Uk(z0)eiωk(t ′−t) + h.c.

(3.151)
is the source field due to the atom. Here σ̂ and σ̂ † are again two-state lowering and
raising operators, respectively, d is the electric dipole matrix element for the two-
level atom of transition frequency ω0, and Uk(z) is a mode function normalized
in a volume of cross-sectional area S and length L. In our model,

Uk(z) = (2/SL)1/2 sin k(L − z) (3.152)

so that Uk(L) = 0 at the (perfectly conducting) mirror. In the limit L → ∞,∑
k → (L/π)

∫
dk = (L/πc)

∫
dω and

Ês(z, t) → d
ε0cS

∫ t

0
dt ′ [σ̂ (t ′) + σ̂ †(t ′)] ∂

∂ t ′

×
∫ ∞

−∞
dω sin

ω

c
(L − z) sin

ω

c
(L − z0)eiω(t ′−t). (3.153)

We let z, z0, L → ∞ in such a way that z−z0, L −z0, and L −z remain finite and
positive. These limits are those appropriate for an atom at a distance D = L − z0
from a single mirror. In this limit12,

Ês(z, t) = − d
2ε0cS

[
˙̂σ x

(
t − z − z0

c

)
− ˙̂σ x

(
t − 2L − z − z0

c

)]
(z > z0)

(3.154)
where σ̂x = σ̂ + σ̂ †. It is important to note that no approximations have been
made in the derivation of this result from the Hamiltonian for our model.

In the approximation ˙̂σ (t) ∼= −iω0σ̂ (t), we obtain

Ês(z, t) ∼= idω0

2ε0cS

[
σ̂

(
t − z − z0

c

)
− σ̂

(
t − 2L − z − z0

c

)]

− idω0

2ε0cS

[
σ̂ †

(
t − z − z0

c

)
− σ̂ †

(
t − 2L − z − z0

c

)]

≡ Ê (+)
s (z, t) + Ê (−)

s (z, t) (3.155)

where the positive- and negative-frequency parts of the field are given
(approximately) by

Ê (+)
s (z, t) ∼= idω0

2ε0cS

[
σ̂

(
t − z − z0

c

)
− σ̂

(
t − 2L − z − z0

c

)]
(3.156)

12 Unit step functions θ(t − (z − z0)/c) and θ(t − (2L − z − z0)/c) are implicit in the first and
second terms, respectively. To simplify the equations, we omit the step functions except where they
are crucial to our discussion. Terms involving reflection off the mirror at z = 0 are absent in equation
(3.154) as a consequence of our assumption L → ∞, i.e. that the mirror at z = 0 is infinitely far from
the atom in our model.
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and Ê (−)
s (z, t) = Ê (+)

s (z, t)†. In particular, at the position z = z0 of the atom, we
obtain from (3.156) the radiation reaction field

Ê (+)
s (z0, t) = idω0

2ε0cS

[
σ̂ (t) − σ̂

(
t − 2D

c

)]
∼= idω0

2ε0cS

[
1 − e2iω0 D/c

]
σ̂ (t) = 0

(3.157)
for e2iω0 D/c = 1, where D = L − z0 is the distance of the atom from the mirror.
In other words, if e2iω0 D/c = 1, the radiation reaction responsible for spontaneous
emission vanishes and spontaneous emission is inhibited.

The first term in brackets in equation (3.156) is a retarded field propagating
from z0 to z. The second term involves propagation from z0 to the mirror and
then to z. These terms, therefore, correspond to fields propagating in the positive
and negative z directions, respectively, as can also be seen from a plane-wave
expansion of the field. The ‘forward’-propagating field

Ê (+)
s,F (L, T ) ∼= idω0

2ε0cS
σ̂

(
T − D

c

)
(3.158)

for z = L can be measured instantaneously: the photon-counting rate at an ideal
broadband photodetector replacing the mirror at z = L and t = T is proportional
to the normally ordered correlation function

〈Ê (−)
s,F (L, T )Ê (+)

s,F (L, T )〉 ∼=
(

dω0

2ε0cS

)2 〈
σ̂ †

(
T − D

c

)
σ̂

(
T − D

c

)〉

=
(

dω0

2ε0cS

)2

P
(

T − D
c

)
(3.159)

where P(t) is the probability at time t that the atom is in the excited state. There
is, thus, an immediately non-vanishing photon-counting rate at z = L when the
detector replaces the mirror at time t = T .

Experiments have been performed to test the prediction that a photon can
be detected immediately following the sudden replacement of a mirror by a
photodetector. Branning et al [125] used the process of spontaneous parametric
down-conversion in which, unlike the case of an atom in a cavity, inhibition can
be obtained with cavities much longer than the emission wavelength [47, 126]
and with the retardation time 2D/c much larger than in the case of inhibited
spontaneous emission from an atom. Using a Pockels cell effectively to switch a
cavity mirror on or off in a time of several ns—shorter than 2D/c—they found
that a photon can be counted immediately.

In an experiment based on second-harmonic generation from a Langmuir–
Blodgett film, Kauranen et al [127] observed that there is a non-vanishing field
between the emitter and a mirror even when the film is positioned such that
emission is suppressed. This corroborates the theoretical analysis, which we now
present in a bit more detail.
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The rate at which field energy is lost from the cavity when the mirror is
switched out at t = T is

R(T ) = ε0cS〈Ê (−)
s,F (L, T )Ê (+)

s,F (L, T )〉 = ε0cS
(

dω0

2ε0cS

)2

P
(

T − D
c

)

= β ω0 P
(

T − D
c

)
. (3.160)

Here β ≡ d2ω0/4 ε0cS is half the spontaneous emission rate in the ‘free-space’
limit D → ∞ in our model [124]. Both (3.158) and (3.160) are applicable at any
time t > D/c replacing T .

The probability that the atom at time t is in the excited state is given by [124]

P(t) =
∣∣∣∣

∞∑

n=0

βn

n!

(
t − 2nD

c

)2

e−β(t−2nD/c)θ

(
t − 2nD

c

) ∣∣∣∣
2

(3.161)

for the case e2iω0 D/c = 1 of interest here. For times t sufficiently large compared
with the ‘photon bounce time’ 2D/c, P(t) reaches a steady-state value; for
2β D/c ' 1, which is the case in standard cavity QED experiments, this steady-
state value is Ps ∼= e−2β D/c. Assuming T ) 2D/c, therefore, which must be
the case if the mirror is switched out after a time when spontaneous emission is
inhibited (P > 0, Ṗ = 0), we have

R(T ) = β ω0 Ps. (3.162)

This has the following interpretation. The steady-state inhibition of
spontaneous emission, i.e. the fact that the atom is not losing any net energy
to the field by spontaneous emission, implies that any radiation emitted toward
the mirror is exactly balanced by radiation reflected back from the mirror, a
result consistent with (3.156). In particular, the rate at which radiant energy is
transported toward the mirror is half the spontaneous emission rate, β Ps, times
ω0, which is just (3.162). (The half is required because we are considering only

the energy in the one-sided region z0 < z < L.)
After the mirror is switched out at t = T , the atom cannot begin to lose

energy to spontaneous emission until a time D/c later. The fact that we can,
nevertheless, count a photon before t = T + D/c might, therefore, appear
to violate energy conservation. Consider, however, the (cycle-averaged) energy
WF(T ) associated with forward-propagating radiation in the space z0 < z < L at
time T :

WF(T ) = ε0S
∫ L

z0

dz 〈Ê (−)
s,F (z, T )Ê (+)

s,F (z, T )〉

= ε0S
(

dω0

2ε0cS

)2 ∫ L

z0

dz P
(

T − z − z0

c

)
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= β ω0

∫ T

T −D/c
dt ′ P(t ′) =

∫ T

T −D/c
dt ′ R(t ′) = D

c
R(T ) = β D

c
ω0 Ps.

(3.163)

There is also non-vanishing energy associated with backward-propagating
radiation and an interference between forward- and backward-propagating
radiation. It follows that the non-vanishing photon-counting rate at t = T occurs
not at the expense of the atom but rather as a depletion of field energy, i.e. a
depletion of the energy associated with the backward-propagating field and the
interference of the counter-propagating fields. We now take up this point in more
detail.

Our analysis thus far has relied on the intuitive idea that the Poynting vector
associated with the forward-propagating radiation alone gives the rate of energy
depletion from the cavity when the mirror is suddenly removed. For a better
appreciation of where the energy comes from to register a count at the detector,
we consider now the time dependence of the cavity energy after the mirror is
removed. The mirror switchout at t = T will affect the backward-propagating
field in such a way that the field (3.156) is replaced by

Ê (+)
s (z, t) ∼= idω0

2ε0cS

[
σ̂

(
t − z − z0

c

)
θ

(
t − z − z0

c

)
− σ̂

(
t − 2L − z − z0

c

)

× θ

(
t − 2L − z − z0

c

)
θ

(
T − t + L − z

c

) ]
(3.164)

where now we have explicitly included all appropriate step functions. The last
step function accounts for the fact that backward-propagating waves persist at
point z at times t > T only if L − z > c(t − T ), i.e. if the information that the
mirror is gone at t = T has not yet propagated to z. Based on this expression, we
calculate, in a manner analogous to (3.162), the cavity energy associated with the
backward-propagating waves plus the interference of the forward- and backward-
propagating waves in the region z0 < z < L:

WB,BFI ∼= 1
c
β ω0[D − c(t − T )]Ps (3.165)

for T < t < T + D/c. Thus

d
dt

WB,BFI(t) = −β ω0 Ps (T < t < T + D/c) (3.166)

which is just −R(T ) [equation (3.162)], i.e. the rate at which energy associated
with the forward-propagating radiation will escape from the cavity when the
mirror is switched out.

This confirms the assertion that the immediate detection of a photon, in spite
of inhibited spontaneous emission, occurs at the expense of cavity field energy
or, actually the change in field energy associated with the backward-propagating
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radiation and its interference with forward-propagating radiation when the mirror
is switched out. It is precisely this change, according to (3.162) and (3.166),
that propagates out of the cavity and that can produce a photon count. We
emphasize again that this occurs in spite of the fact that, back at the atom, there is
still destructive interference and inhibited spontaneous emission, and a constant
upper-state probability Ps, until time T + D/c. The total field energy has a
constant expectation value up until this time. After t = T + D/c, of course,
the atom radiates as it does in free space.

It is perhaps worth noting why, as a consequence of retardation, there will
always be some field energy in the cavity before the mirror is removed. For a time
t = 2D/c after the atom is excited at t = 0, say, it will radiate uninhibitedly as if
in free space. For times 0 < t < 2D/c, therefore, the energy in the field is

W (t) = ω0[1 − P(t)] = ω0[1 − e−2βt ] (3.167)

and the rate at which the field energy grows is

Ẇ (t) = 2β ω0e−2βt . (3.168)

At time t = D/c, when the radiated field reaches the mirror,

Ẇ
(

D
c

)
= 2β ω0e−2β D/c (3.169)

which, for 2β D/c " 1, is approximately 2β ω0 Ps, as noted earlier. The rate
at which the energy of the forward-propagating radiation grows is half this,
i.e. R(D/c) ∼= β ω0 Ps = R(T ) as given by equation (3.162). As the atom
quickly attains a steady state for the case 2β D/c " 1 under consideration,
the rate at which energy is put into the forward-propagating field will quickly
equilibrate to the value R(T ). It is precisely this power that can be registered at the
detector replacing the mirror. There is no contradiction with the fact of inhibited
spontaneous emission because, although Ṗ = 0, the steady-state probability Ps is
always less than unity.

It also seems worth noting that, in the Schrödinger picture, the atom–field
system at time t < T is described to an excellent approximation by the state
vector

|ψ(t)〉 = a(t)|atom excited〉|no photons〉
+

∑

k

ak(t)|atom in lower state〉|one photon in mode k〉 (3.170)

where P(t) = |a(t)|2 is the probability that the atom is excited at time t . In the
steady state of inhibited spontaneous emission, P = Ps < 1, i.e. a, ak < 1 and
the atom–field system is in an ‘entangled’ state.
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3.8 Précis

The quantum theory of fields is formulated in such a way as to be consistent with
causality (e.g. field commutators vanish for spacelike separations). In specific
examples, however, an explicit proof of causality may not be an entirely trivial
matter. In the Fermi problem of two atoms in vacuum, for example, causality can
be shown to hold only when we go beyond the rotating-wave approximation in
the Heisenberg picture or, equivalently, when we include energy-non-conserving
processes in the Schrödinger or interaction pictures. In order to make causality
explicit in the theory of photodetection, similarly, we should make the rotating-
wave approximation leading to normal ordering only after we have solved for the
(causal) electric field operator.

In like manner, it is not always a trivial matter to show where specific
proposals for superluminal communication break down, even though we are
certain that they must. In the process of disproving them, we can gain new
insights: the no-cloning theorem, for instance, was motivated by a superluminal
communication scheme based on quantum correlations. In fact, the highest
possible cloning fidelity allowed by quantum theory is exactly that which forbids
superluminal signalling. We have discussed these ‘spooky’ correlations and
argued that they cannot be used to transmit information instantaneously.

Examples such as the ‘superluminal quantum Morse telegraph’ lead to the
conclusion that, if superluminal communication is to be impossible, it must be
impossible to determine the eigenstate of a single particle locally. It must be
impossible to devise any apparatus that preserves the polarization of an incident
photon with arbitrary linear polarization while reversing the helicity of an incident
photon with circular polarization.

We have described a simple extension of Fermi’s model in which the two
atoms are embedded in a dielectric medium, and have discussed the implications
of superluminal group velocity in this quantum-mechanical model. We showed
that it is possible, without violating causality, for the initially unexcited atom to
become excited, with high probability, as if a photon propagated superluminally
from one atom to the other. We also discussed the quantum analog of the
Sommerfeld–Brillouin theorem that the front velocity is equal to the speed of
light in vacuum.

3.9 Appendix: On Einstein and hidden variables

It seemed to me as if you had erected
some dummy Einstein for yourself, which you then
knocked down with great pomp.

W Pauli, letter to M Born, 31 March 1954 [100]

Do Bell’s theorem and the experiments that have upheld the predictions of
quantum theory vis-à-vis local hidden variable theories mean that Einstein was
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wrong in his objections to quantum theory? The widely held view that this is
the case seems to be based on the following reasoning: Einstein argued that
quantum theory is incomplete because it does not allow for an objective reality.
Bell’s theorem shows that no (local) hidden variable theory based on such an
objective reality can be in full accord with the statistical predictions of quantum
theory and, in particular, that there are certain inequalities that are predicted by
hidden variable theories but not by quantum theory. Since experimental results
violate these inequalities, there is no objective reality in the EPR sense and,
therefore, Einstein’s arguments against quantum theory, which stemmed from the
presumption of such a reality, were incorrect.

But the case can be made that Bell’s theorem and the experiments it
stimulated are almost irrelevant to the question of whether Einstein was ‘right’
or ‘wrong’ in his objections to quantum theory, that Einstein presupposed the sort
of correlations confirmed by the experiments, and that the experiments only rule
out a class of theories he did not consider worthy of serious attention.

Recall what Einstein meant by ‘completeness’ and ‘reality’ in the context of
a physical theory. In the famous EPR paper he, Podolsky, and Rosen carefully
defined these terms [128]. According to EPR:

If, without in any way disturbing a system, we can predict with certainty
(i.e. with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this
physical quantity.

As for ‘completeness of a physical theory,’ EPR require as a necessary condition
that every element of the physical reality must have a counterpart in the physical
theory.

To illustrate their ideas, and to clarify their definitions of ‘elements of
physical reality’ and ‘completeness’, EPR considered a two-particle system in
which there are correlations between the coordinates and the momenta of the
particles. In the modern literature, it is customary to deal instead with correlated
two-state systems, such as a system of two spin- 1

2 particles described by the
singlet spin state

|ψ〉 = 1√
2
[| + n〉1| − n〉2 − | − n〉1| + n〉2] (3.A.171)

| ± n〉i is the state for which particle i(= 1, 2) has spin-up (+) or -down (−)
in the direction of the (arbitrary) unit vector n. The particles are assumed to be
separated by a large distance and not to interact. Let us imagine that the particles
are moving in opposite directions along the z-axis, particle 1 along z and particle
2 along −z.

If we measure the spin component of particle 1 along the x-axis and find
spin-‘up’, then, according to (3.A.171), we must find spin-‘down’ for particle
2. Likewise if we find that particle 1 has spin-down, then particle 2 must have
spin-up. The spin components of the particles are correlated in this way.
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Consider now the implications of this system in the context of EPR. In
particular, consider what measurements on particle 1 tell us about particle 2. Since
the particles are arbitrarily far apart and non-interacting, measurements made on
particle 1 do not disturb particle 2. By making measurements of the x component
of particle 1, we can predict, with certitude, the x component of the spin of particle
2. The x component of the spin of particle 2 is, therefore, an ‘element of physical
reality’ in the EPR sense. We can choose instead to measure the y component of
the spin of particle 1 and thereby conclude that the y component of the spin of
particle 2 is likewise an element of physical reality.

The fact that either the x or y spin component of particle 2 can be
predicted with absolute certainty, without ever making a measurement directly on
particle 2, suggests that these elements of reality exist ‘out there’, independent
of observation. But the x and y components of the spin correspond to
non-commuting operators, and quantum theory states that they cannot have
simultaneously precise values. In other words, according to EPR, there are
simultaneous elements of physical reality in this system that are not accounted
for by quantum theory, which therefore does not provide a ‘complete’ description
of the system13.

EPR did not argue from the perspective of any deterministic philosophy.
Determinism plays essentially no role in their argument—they even allow for
the possibility of a non-deterministic theory when they use the phrase ‘with
probability equal to unity’ in their definition of an element of reality. No less
a physicist than Max Born misunderstood for many years Einstein’s primary
objections to quantum theory. Pauli, in a letter to Born [100, p 221], pointed
out that

. . . Einstein does not consider the concept of ‘determinism’ to be as
fundamental as it is frequently held to be (as he told me emphatically
many times), and he denied energetically that he had ever put up a
postulate such as (your letter, para. 3): ‘the sequence of such conditions
must also be objective and real, that is, automatic, machine-like,
deterministic’. In the same way, he disputes that he uses as criterion
for the inadmissability of a theory the question: ‘Is it rigorously
deterministic?’

Einstein’s point of departure is ‘realistic’ rather than ‘deterministic,’
which means that his philosophical prejudice is a different one . . .

Born later acknowledged that he ‘had failed to understand what mattered to
[Einstein]’ [100, p 227].

Bell [130] noted

It is remarkably difficult to get this point across, that determinism is
not a presupposition of the [EPR] analysis. There is a widespread

13 The word ‘paradox’ does not appear in the EPR paper but Einstein did refer to ‘the paradox recently
demonstrated by myself and two collaborators’ in his 1936 essay on ‘Physics and Reality’ [129].
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and erroneous conviction that for Einstein determinism was always the
sacred principle. The quotability of his famous ‘God does not play dice’
has not helped in this regard.

Einstein’s ‘philosophical prejudice’ in favour of ‘realism’, i.e, of a reality
independent of observation, is almost certainly part of the mindset of most
scientists. Feynman, for instance, in a lecture ‘On the Philosophical Problems
in Quantizing Macroscopic Objects’ expressed exactly the same misgivings as
Einstein about the standard, observer-dependent interpretation of quantum theory
[131]:

This is all very confusing, especially when we consider that even
though we may consistently consider ourselves always to be the outside
observer when we look at the rest of the world, the rest of the world is at
the same time observing us, and that often we agree on what we see in
each other. Does this then mean that my observations become real only
when I observe an observer observing something as it happens? This is
a horrible viewpoint. Do you seriously entertain the idea that without
the observer there is no reality? Which observer? Any observer? Is a fly
an observer? Is a star an observer? Was there no reality in the universe
before 109 B.C. when life began? Or are you the observer? Then there is
no reality to the world after you are dead? I know a number of otherwise
respectable physicists who have bought life insurance.

Could our inability to make definite predictions in every instance mean that
we are simply ignorant of ‘hidden variables’ whose values, if known, would
uniquely determine the outcome of any measurement? Could the wavefunction
in quantum theory only reflect aspects of a statistical distribution of such hidden
variables, which could allow for an underlying objective reality in the EPR sense?

Conjectures about hidden variables go back as far as de Broglie’s early work.
In the early 1950s, Bohm raised again the possibility of hidden variables [132].
He elucidated various features of quantum theory in the context of the simple
correlated two-state system of the preceding section. In particular, Bohm showed
that a hidden variable theory could produce the same predictions of quantum
theory if it admitted a non-local interaction between separated systems, a feature
later noted by Bell [133]. Bell proved that any hidden variable theory in full
agreement with the statistical predictions of quantum theory must have this non-
local character. We will now briefly review these ideas, as well as a proof of the
equivalent (contrapositive) statement of Bell’s theorem: no local hidden variable
theory can reproduce all the statistical predictions of quantum mechanics. We
will begin by quickly reviewing, for the benefit of the reader not familiar with the
territory, what is meant by hidden variables and locality in the context of Bohm’s
correlated spin system.

Suppose that all the spin components of each particle in the Gedanken
experiment considered earlier have simultaneous elements of reality not
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accounted for by quantum theory. We imagine they are ‘out there’ all along, even
though quantum theory does not allow us to predict them all simultaneously. We
imagine furthermore that there are ‘hidden’ variables not included within quantum
theory and that if only we knew the values of these variables, we could make
definite predictions for all ‘elements of reality’ in the EPR sense. There might, for
instance, be a hidden variable λ1 whose value fully determines the x component
of the spin of particle 1.

We assume that the spin component of particle 1 along any unit vector a is
a function of λ1 and a and denote this function by A(a,λ1). We assume that the
predictions of quantum theory are correct as far as they go and so we try to bring
the hidden variable theory into as close an agreement as possible with quantum
theory. Thus, we assume more specifically that A(a,λ1) has only two possible
values:

A(a,λ1) = ± 1
2 . (3.A.172)

Similarly, we assume a hidden variable λ2 such that the measured value of the
spin of particle 2 along any direction b is a function B(b,λ2) with the two possible
values

B(b,λ2) = ± 1
2 . (3.A.173)

In writing (3.A.172) and (3.A.173), we have implicitly made an important
additional assumption: A(a,λ1) is independent of b and B(b,λ2) is independent
of a. In other words, we are assuming that a measurement of the spin component
of particle 1 along a is independent of the direction b along which the spin
of particle 2 is measured. This seems reasonable when we remember that the
two particles can be arbitrarily far apart when we choose to measure their spin
components and that we do not want to allow for any instantaneous action at a
distance that might lead to a dependence of A(a,λ1) on b or, for that matter, λ2.
This assumption defines what is called a local hidden variable theory.

The restrictions (3.A.172) and (3.A.173) on the possible values of the
functions A and B will bring our hidden variable theory into agreement with
quantum theory to the extent that the measured value of the component of the
spin of each particle along any direction must be either + 1

2 or − 1
2 . Since we want

the theory to agree as fully as possible with the predictions of quantum theory, we
will add to (3.A.172) and (3.A.173) the condition that, when a = b, the measured
spins must always be opposite. Thus, for all possible values of λ1 and λ2 and for
any direction a, we require

A(a,λ1) = −B(a,λ2). (3.A.174)

It is now easy to show (thanks to Bell) that the assumptions (3.A.172)–
(3.A.174), however reasonable they might seem, are sufficient to rule out full
agreement of the predictions of any local hidden variable theory with the
predictions of quantum theory. Let P(λ1,λ2) be the joint probability distribution
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for λ1 and λ2, so that

E(a, b) =
∫

dλ1

∫
dλ2 P(λ1,λ2)A(a,λ1)B(b,λ2) (3.A.175)

is the expectation value for the product of the spin component of particle 1 in the
a direction and the spin component of particle 2 in the b direction. Bell [133]
considers now the difference E(a, b) − E(a, c). From (3.A.172)–(3.A.175), it
follows that14

E(a, b) − E(a, c)

=
∫

dλ1

∫
dλ2 P(λ1,λ2)[A(a,λ1)B(b,λ2) − A(a,λ1)B(c,λ2)]

=
∫

dλ1

∫
dλ2 P(λ1,λ2)A(a,λ1)B(b,λ2)[1 − 4B(b,λ2)B(c,λ2)]

=
∫

dλ1

∫
dλ2 P(λ1,λ2)A(a,λ1)B(b,λ2)[1 + 4A(b,λ1)B(c,λ2)].

(3.A.176)

Since the quantity in brackets is positive-definite and |A(a,λ1)B(b,λ2)| = 1
4 , we

obtain the Bell inequality

|E(a, b) − E(a, c)| ≤ 1
4 + E(b, c). (3.A.177)

A local hidden variable theory constructed in accordance with the postulates
(3.A.172)–(3.A.175) must, therefore, predict this inequality for the spin
correlation experiment under consideration. However, it is easy to see that this
inequality is not predicted by quantum mechanics, according to which E(a, b) =
− 1

4 a · b. That is, no local hidden variable theory can be in full accord with all the
statistical predictions of quantum theory. This is Bell’s theorem and, since Bell’s
original work, it has been proven in various other ways.

Einstein was well aware of Bohm’s work on hidden variable theories—local
versions of which were shown by Bell to be incompatible in general with the
predictions of quantum theory. Although such theories are ‘complete’ (as well as
deterministic) in the EPR sense, it is clear in the following, from a letter to Born,
that Einstein had little enthusiasm for such theories [100, p 192]:

Have you noticed that Bohm believes (as de Broglie did, by the way, 25
years ago) that he is able to interpret the quantum theory in deterministic
terms? That way seems too cheap to me. But you, of course, can judge
this better than I.

EPR did not propose any ‘complete’ and ‘realistic’ alternative to quantum
theory but it is clear from the passage just cited that Einstein had no interest (or
14 In the second equality, we use the fact that B2(b, λ2) = 1

4 and, in the third, the fact that
B(b, λ2) = −A(b, λ1)
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had long since lost interest) in the ‘cheap’ sort of theory to which Bell’s theorem
applies and against which there is now ample experimental evidence15. Indeed,
Einstein would almost certainly have predicted the outcome of the experiments
testing the predictions of quantum theory against deterministic local hidden
variable theories16. He obviously knew what quantum theory predicts in such
experiments and he knew full well the great predictive success of quantum theory.
According to Pauli, Einstein’s objections had the flavor of ‘ the ancient question
of how many angels are able to sit on the point of a needle . . . Einstein’s questions
are ultimately always of this kind’ [100, p 223].

And as Jammer has written [135],

Although the Einstein–Podolsky–Rosen incompleteness argument was
undoubtedly one of the major incentives for the modern development of
hidden variable theories, it would be misleading to regard Einstein, as
some recent authors do, as a proponent of or even as ‘the most profound
advocate’ of hidden variables. True, Einstein was sympathetically
inclined toward any efforts to explore alternatives, and as such also the
ideas of de Broglie and of Bohm, but he never endorsed any hidden
variable theory.

15 For a review of these experiments, see [134].
16 I have discussed this with five distinguished physicists who have opinions on the matter. Two of
them agree with me.
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Chapter 4

Fast light and signal velocity

Superluminal group velocities do not violate Einstein causality because they are
not signal (information) velocities. In this chapter, we take up in more detail the
question of what defines a signal and describe experiments aimed at clarifying
the meaning of signal velocity. We will discuss the role of noise in the field,
the medium, or the detector, with emphasis on the fact that quantum noise limits
the degree to which a pulse with superluminal group velocity can be measurably
advanced.

4.1 Experiments on signal velocities

In chapter 2, we described some of the first experiments that demonstrated that
optical pulses can propagate with superluminal group velocities and can do so
without any significant distortion of the pulse shape. We now briefly describe
two experiments that further explore the difference between superluminal group
velocity and the velocity of a signal, i.e. the difference between group velocity
and the velocity at which information can be transmitted.

As noted in section 2.5, the signal velocity is sometimes defined as the
velocity at which the half-the-peak-intensity point of an optical pulse propagates1.
But we cannot regard this as a satisfactory definition of a signal because, for a
Gaussian pulse, for example, the half-intensity point does not convey information
that is not already present in the pulse’s leading edge.

We argued that the propagation of new information, or a ‘signal’, requires a
discontinuity in a waveform or one of its derivatives. A signal so defined has the
satisfying property that it cannot be propagated with a velocity exceeding c: there
can be no violation of Einstein causality. However, our discussion was completely
classical and did not take any effects of detection or noise into account. It did not
address the question of what is actually measured by a photodetector.

1 Such a rather arbitrary definition obviously makes the measured signal velocity dependent on the
sensitivity of the detector. Recall the remarks of Brillouin quoted near the end of section 2.5.
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In section 4.3, we give an operational definition of signal velocity vs based
on the fact that the integrated photocurrent at the detector must exceed some
threshold level, depending on noise and the allowed error rate, before it can be
asserted that a signal has been received.

An experiment relating to this definition of vs has been reported by Centini
et al [136]. In their experiments, the peaks of chirped optical pulses passing
through a GaAs cavity of thickness 450 µm were observed to have transit times
that were positive, zero, or negative, i.e. the group velocity vg could be positive,
infinite, or negative, depending on the particular wavelength near 1550 nm. Pulses
propagated in vacuum produced a detector response level of 71 mV, whereas
the pulses transmitted by the cavity produced levels ranging from 22 to 71 mV,
depending on the wavelength. Centini et al defined the operational vs using a
threshold detector level of 2 mV and their measurements showed, among other
things, that vs was always less than the phase velocity c/n, even when the group
velocity was superluminal. The reader is referred to [136] and references therein
for other conclusions of this work and for details of the experiments and the theory
used to analyse them.

Another, particularly significant experiment bearing on the definition of
signal velocity was reported by Stenner et al [137]. As in the experiments of Wang
et al [49], anomalous dispersion in the spectral region between two Raman gain
lines was used to obtain a superluminal group velocity, in this case employing the
atomic coherence produced by two laser pulses in potassium vapour and using
two cells, each of length L/2 = 20 cm, in order to avoid a parametric instability
that could occur if a single cell of length L were used [138]. This resulted in
greater gain and, consequently, a larger pulse advance than in the experiments of
Wang et al: the ‘group index’ ng = n + ω dn/dω (vg = c/ng) was found to be
−19.6 ± 0.8, and the relative pulse advancement was about 10%.

The purpose of the experiments was to measure, evidently for the first
time, the velocity with which information encoded on a superluminal pulse is
transmitted. The pulses were shaped by a waveform generator driving an acousto-
optic modulator. Near the peak of a Gaussian pulse the pulse amplitude was
switched to a high amplitude (1) or a low amplitude (0) for the remaining duration
of the pulse; and this was done at the same point in time on a pulse for either
symbol 0 or 1. If this switching could be done instantaneously, we would have, in
effect, a sharp front which, according to our earlier discussions, should propagate
with the velocity c of light in vacuum. Of course, the finite electronic response
time has the effect of smoothing out the switch in amplitude but the interesting
question remains as to the velocity with which the information that we have a 0
or a 1 can be transmitted.

Before the point on a pulse at which the switching is done, there is of course,
no information as to whether the pulse carries a 0 or a 1 and so the bit error rate
(BER) is 1/22. After the switching point, the information as to whether there

2 The BER characterizes the measurement error probability per bit of information. If there is a
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is a 0 or a 1 will increase from zero and the BER will decrease. Detection of
a 0 or a 1 is assumed to occur when the BER falls below some predetermined
threshold level. Note that the time at which information is actually detected in
this sense will be greater than the time at which information actually appears at
the detector, i.e. there is a ‘detection latency’ !t [137] that depends on the details
of the switching, the detection scheme, noise, and other factors. Note also that
there will be a finite detection latency for vacuum-propagated pulses as well as
for the advanced pulses.

The 0s and 1s were encoded both on pulses transmitted through the
potassium cells and on pulses transmitted through vacuum and, from the
calculated BERs and for a detection threshold set at BER = 0.1, the detection times
Tvac and Tadv were determined. It was found that the time it takes to distinguish
between 0s and 1s was greater for the advanced pulses than for the vacuum-
propagated pulses, i.e. ‘the information detection time for pulses propagating
through the fast-light medium is longer than the detection time for the same
information propagating through vacuum, even though the group velocity is in
the highly superluminal regime for the fast-light medium’ [137].

The time difference Ti = Tadv − Tvac can be expressed as

Ti = (L/vi,adv − L/vi,vac) + (!tadv − !tvac) (4.1)

where the first term is associated with (possibly) different information velocities
and the second with different detection latencies. Stenner et al [137] cite results
of a theoretical model in which the first term vanishes, as would be expected
in the case of a point of non-analyticity, due to the switching, in the temporal
variation of a pulse: the point of non-analyticity should theoretically propagate
with the velocity c, just like a Sommerfeld–Brillouin front. Their model gives
results in qualitative agreement with the experimental data and yields vi,adv =
0.4(0.7 − 0.2)c.

These experiments demonstrate that the measured signal velocity depends on
the detection process, including quantum noise. In each case, the signal velocity
for pulses with superluminal group velocities is found to be subluminal and
consistent with Einstein causality. We now turn to some theoretical considerations
of signal velocity relating specifically to quantum noise.

4.2 Can the advance of a weak pulse exceed the pulsewidth?

If a pulse with a superluminal group velocity could be advanced after propagation
in a medium by a time that is large compared with the pulsewidth, and if this
could be done at the single-photon level, we would have something very much

probability p1 that a 0 will be erroneously detected as a 1, and a probability p0 that a 1 will be
erroneously detected as a 0, then the BER is defined as 1

2 p0 + 1
2 p1 (assuming 0 and 1 have equal

transmission probabilities). The procedure for defining BER in the work of Stenner et al is rather
technical and is described in the caption of figure 3 in their paper.
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like a superluminally propagating particle (but satisfying Einstein causality). As
discussed briefly in section 2.3, Chiao et al (CKK) [39] have suggested that an
‘optical tachyon’ might be realized in an optical amplifier with sufficiently long
relaxation times. The group velocity in their model is given by equation (2.46)
and indicates that an off-resonant pulse can propagate with a superluminal group
velocity in an amplifier.

However, Aharonov, Reznik and Stern (ARS) [139] have presented general
arguments, based on the unitary evolution of the state vector, that ‘strongly
questions the possibility that these systems may have tachyonlike quasiparticle
excitations made up of a small number of photons’. They also consider a
particular model as an analog of the CKK system.

In this section, we address the question of superluminal propagation at the
one- or few-photon level and, in particular, the role played by quantum noise in
the propagation of such extremely weak pulses. We begin with some physical
considerations about the observation of superluminal propagation and we briefly
compare the ARS and CKK models.

The quantum noise of interest here is associated with spontaneous emission
and it could invalidate the CKK results in two ways. First, CKK assume that the
atoms stay in their excited states as the pulse propagates through the amplifier.
Radiative decay of the excited state will modify their dispersion relation and, if
the decay is rapid enough, can lead to a subluminal rather than superluminal group
velocity, since w in equation (2.46) can become negative. This can be avoided
by using a sufficiently short pulse, during which radiative decay is negligible.
Second, spontaneously emitted radiation might interfere with the measurement of
the superluminal group velocity by introducing substantial noise. ARS address
the latter possibility.

Although the ARS arguments are certainly compelling, they are based in
part on an analog of an optical amplifier rather than a theory involving the
interaction of the electromagnetic field with an atomic medium. In particular,
their model is that of a single quantum field rather than coupled atomic and
electromagnetic quantum fields. The dispersion relation associated with this
model, and the criteria assumed by ARS for the observability of superluminal
propagation, lead to the conclusion, by analogy to an optical amplifier, that
spontaneous emission noise cannot be avoided no matter how short the pulse or
the transit time through the amplifier. Specifically, the unstable modes appearing
in their model—which ‘are analogous to spontaneous emission in the optical
model of an inverted medium of two-level systems’ [139]—will preclude the
observation of superluminal group velocity when the pulse is made up of a small
number of photons; the quantum noise will be larger than the signal.

ARS state two necessary conditions for the observability of superluminal
propagation [c = 1 in their units]:

(1) vgT ! 1/δk, where vg is the group velocity, T is the time at which the
wavepacket is observed, and δk is the spectral width of their initial pulse.
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(2) (vg − 1)T " 1/δk.

The first condition ensures that ‘the point of observation [is] far outside the
initial spread of the wavepacket’. The second allows us to ‘distinguish between
superluminal propagation and propagation at the speed of light’.

In the ARS model, the field φ satisfies

∂2φ

∂ t2 − ∂2φ

∂z2 − m2φ = 0 (4.2)

and the group velocity is3

vg = k0√
k2

0 − m2
(4.3)

where k0 is the central value of the spatial frequency k for the initial pulse. For
m < k0, we can approximate vg by 1 + m2/2k2

0, so that conditions 1 and 2 are
satisfied if

m2T " k2
0/δk " k0. (4.4)

k0 " 1/T —the condition that the observation time should be much larger than
the central frequency of the pulse—then implies

mT " 1. (4.5)

For mT " 1, the amplified quantum noise grows exponentially, as shown later
[equation (4.47)]. ARS, therefore, conclude that the ‘signal amplitude should
be exponentially large’ in order to distinguish it from noise. Thus, according to
ARS, the observability of superluminality for an input pulse consisting of only a
few photons would be clouded by spontaneous emission noise.

Let us now turn to the implications of conditions (1) and (2) for the actual
system of interest, namely a very short optical pulse in an inverted medium [140].
Can we satisfy these conditions for observation times short compared with the
radiative lifetime?

For a short optical pulse of central frequency ω propagating in an inverted
medium (w = 1) with resonance frequency ω0, the refractive index is [equation
(2.40)]

n(ω) ∼= 1 − Ne2 f
4mε0ω0

1
ω0 − ω

≡ 1 −
ω2

p

4ω0&
(4.6)

for ω2
p/(4ω0) % |ω0 − ω| ≡ |&|. We are assuming that |&| is large compared

with the absorption width, which, in our case, is the radiative decay rate. Equation
(4.6) implies

vg

c
=

(
d

dω
[ωn(ω)]

)−1

= 1
1 − ω2

p/4&2 (4.7)

3 This follows from the dispersion relation ω2 = k2 − m2 implied by (4.2).
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and
vg

c
− 1 =

ω2
p/4"2

1 − ω2
p/4"2 =

ω2
p

4"2

vg

c
. (4.8)

Then conditions (1) and (2) of ARS become, respectively,

T
1 − ω2

p/4"2 " 1
cδk

∼ τp (4.9)

(ω2
p/4"2)T

1 − ω2
p/4"2 " 1

cδk
∼ τp (4.10)

with τp the pulse duration. Both conditions can be satisfied if, for instance,
T " τp and ω2

p/4"2 is not too small. To avoid spontaneous emission during
the observation time T , take T $ τRAD, where τRAD is the radiative lifetime of a
single inverted atom. Then the ARS conditions require that

τRAD " T " τp. (4.11)

There is another aspect of an inverted atomic medium that must be addressed,
namely superfluorescence (SF), a collective phenomenon of the sample as a
whole. We will denote by NT, S, and L the number of atoms, the cross-sectional
area, and the length of the sample, respectively, so that the density of atoms
is given by N = NT/SL. If collisional and other dephasing mechanisms are
sufficiently weak, an inverted medium of NT atoms can emit SF radiation at the
rate

τR = τRAD/NT (4.12)

i.e. the radiative decay time can, in effect, be smaller by a factor of NT than the
single-atom τRAD assumed in the discussion thus far. The peak of the SF pulse
occurs at a time [141–143]

τD ∼ τR[ 1
4 ln(2π NT)]2 (4.13)

following the excitation of the atoms. Evidently the quantum noise associated
with SF will be small if

τp, L/c < τR < τD. (4.14)

We note for later purposes that

ω2
p = Ne2 f

mε0
= 4

τRAD

NT

SL
Sc = 4

τR

c
L

(4.15)

where we have used the equation 1/τRAD = e2 f/4mε0Sc for the single-atom
radiative lifetime4.
4 This differs from the Einstein A coefficient e2ω2

0 f/2πε0mc3 for spontaneous emission because it
is the rate into modes propagating unidirectionally with a single polarization. See Segev et al [140,
appendix A]. This result is implicit in the definition of β in equation (3.160).
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This brief summary lends support to the CKK suggestion but obviously a
more quantitative analysis is called for. We now formulate, in the Heisenberg
picture, a quantum theory of pulse propagation in an amplifier [140].

We begin with the Hamiltonian for NT two-level atoms (TLAs) interacting
with the quantized electromagnetic field via electric dipole transitions [cf
(3.109)]:

Ĥ = 1
2 ω0

NT∑

j=1

σ̂z j − d
NT∑

j=1

σ̂x j Ê(z j ) +
∑

k

ωk â†
k âk (4.16)

where ω0 and d have the same meaning as before and z j is the z-coordinate
of atom j . We consider a one-dimensional model in which the atoms occupy
the region from z = 0 to z = L and the field is a superposition of plane
waves propagating in the z direction. The electric field operator is given by
Ê(z) = Ê (+)(z) + Ê (−)(z), where

Ê (+)(z) = i
∑

k

(
ωk

2ε0S$

)1/2

âkeikz (k = ωk/c) (4.17)

and Ê (−)(z) = Ê (+)(z)†. S$, where S, as before, is a cross-sectional area and
$ a length, is the quantization volume. For simplicity, we consider only a single
field polarization—linear polarization along the direction of the transition dipole
moment of the TLAs.

We will work in the Heisenberg picture, in which the time-dependent electric
field operator satisfies

(
∂2

∂z2 − 1
c2

∂2

∂ t2

)

Ê = 1
ε0c2

∂2 P̂
∂ t2 = d

ε0c2S

NT∑

j=1

∂2σ̂x j

∂ t2 δ(z − z j )

→ 1
ε0c2 Nd

∂2

∂ t2 σ̂x (z, t) (4.18)

where, in the last step, we have made the continuum approximation for the
polarization density P̂ , assuming a uniform atomic density N . We now write

Ê (+)(z, t) = F̂(z, t)e−iω(t−z/c) (4.19)

and assume F̂(z, t) is slowly varying in z and t compared with exp[−iω(t −z/c)].
In this approximation,

2i
ω

c

(
∂ F̂
∂z

+ 1
c

∂ F̂
∂ t

)
= Nd

ε0c2

∂2σ̂x

∂ t2 eiω(t−z/c). (4.20)

It will be convenient, as in chapter 3, to employ the atomic lowering and raising
operators σ̂ = 1

2 (σ̂x − iσ̂y) and σ̂ † = 1
2 (σ̂x + iσ̂y), respectively, such that

[σ̂ , σ̂ †] = −σ̂z , and to write

σ̂ (z, t) = ŝ(z, t)e−iω(t−z/c) (4.21)
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where the operator ŝ(z, t) is assumed to be slowly varying in the same sense as
F̂(z, t). Then, in the rotating-wave approximation, we can replace (4.20) with

∂ F̂
∂z

+ 1
c

∂ F̂
∂ t

=
(

iNdω0

2ε0c

)
ŝ (4.22)

where, on the right-hand side, we have approximated ω by ω0. This equation and
the TLA Heisenberg equations [140]

∂ ŝ
∂ t

= − i($ − iβ)ŝ − id
σ̂z F̂ (2β = 1/τRAD) (4.23)

∂σ̂z

∂ t
= − 2β(1 + σ̂z) − 2id

(F̂†ŝ − ŝ† F̂) (4.24)

which follow straightforwardly from the Hamiltonian, provide a basis for a
quantum theory of propagation in either amplifying or absorbing media.

In the semiclasical approximation in which the atom and field operators
are replaced by their expectation values, equations (4.22)–(4.24) reduce to well-
known Maxwell–Bloch equations.

Three limits are of particular interest:

(1) The limit β → 0,$ = 0, and σ̂z → 1 considered later gives equations
(4.26)–(4.29) describing superfluorescence when the initial state of the field
is the vacuum.

(2) The limit ω # ω0 gives the ARS field equation, as discussed in section 4.2.1.
(3) The CKK case of large detuning, σ̂z → 1, and a very short incoming pulse,

is discussed in section 4.2.2.

If the field’s central frequency ω is assumed to match exactly the atomic
resonance frequency ω0, so that $ = 0, and if we restrict ourselves to times short
compared with the single-atom radiative lifetime τRAD and assume that the atoms
remain with probability $ 1 in their excited states over times of interest, we can
ignore (4.24) and replace σ̂z(z, t) by 1 and equation (4.23) by

∂ ŝ
∂ t

= − id
F̂ . (4.25)

In terms of the independent variables ζ = t − z/c and η = z,

∂ ŝ
∂ζ

= − id
F̂ (4.26)

∂ F̂
∂η

=
(

iNdω0

2ε0c

)
ŝ (4.27)

implying

∂2ŝ
∂η∂ζ

=
(

ω2
p

4c

)

ŝ (4.28)
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∂2 F̂
∂η∂ζ

=
(

ω2
p

4c

)

F̂ . (4.29)

Equations (4.26)–(4.29) have been used in studies of the build-up of
superfluorescent radiation [141–143]. It will be useful for our purposes briefly
to rederive here one of the most important results of those studies.

Equation (4.22) has the formal solution

F̂(z, t) = F̂0(z, t) +
(

iNdω0

2ε0c

) ∫ z

0
dz′ ŝ

(
z′, t − z − z′

c

)
θ

(
t − z − z′

c

)

= F̂0(z, t) +
(

iNdω0

2ε0c

) ∫ z

0
dz′ ŝ

(
z − z′, t − z′

c

)
θ

(
t − z′

c

)
(4.30)

where we have chosen the retarded Green function over the advanced Green
function in order to ensure causality. Here θ is the unit step function and
F̂0(z, t) is a solution of the homogeneous equation. We are interested in the
expectation value 〈F̂†(L, t)F̂(L, t)〉 at the end (z = L) of the medium. For
superfluorescence, the expectation value is taken over the vacuum state of the
field, in which case the first term on the right-hand side of (4.30) does not
contribute to expectation values. We may, therefore, ignore this term for our
purposes. Defining y = 2

√
ζη, we find from (4.28) and (4.29) that ŝ satisfies the

differential equation for I0(y), the modified Bessel function of order zero [144].
The solution of interest for F̂(L, t) is then [141–143]

F̂(L, t) =
(

iNdω0

2ε0c

) ∫ L

0
dz′ ŝ(L − z′, 0)I0

(
ωp

√
(z′/c)(t − z′/c)

)
θ(t − z′/c).

(4.31)
In order to calculate 〈F̂†(L, t)F̂(L, t)〉, we require 〈ŝ†(z′, 0)ŝ(z, 0)〉, which

we evaluate later. We obtain [141–143]

〈F̂†(L, t)F̂(L, t)〉 =
(

dω0

2ε0c

)2 N
S

∫ L

0
dx θ(t − x/c)I 2

0

(
ωp

√
(x/c)(t − x/c)

)
.

(4.32)
For times large enough that I0 may be replaced by its asymptotic form,

〈F̂†(L, t)F̂(L, t)〉 ∼ ω0

16πε0Sct
e4

√
t/τR (4.33)

where we have used the equation ω2
p = Ne2 f/mε0 = 2Nd2ω0/ ε0. Equating

the intensity expectation value 2cε0〈F̂†(L, t)F̂(L, t)〉 to the maximum expected
SF intensity NT ω0/SτR, we arrive at the expression (4.13) for the time at which
the SF pulse reaches its peak intensity. In the short-time limit, however,

〈F̂†(L, t)F̂(L, t)〉 ∼
(

dω0

2ε0c

)2 N
S

ct (4.34)
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a result to which we will return in section 4.2.3.
Finally, let us derive the expression for 〈ŝ†(z′, 0)ŝ(z, 0)〉 that we have used

to obtain (4.32). For the initial state in which all the TLAs are in the upper state,
〈ŝi (0)〉 = 0 and 〈ŝ†

i (0)ŝ j (0)〉 = δi j . Then the operator

ˆ =
NT∑

i=1

ŝi (0) (4.35)

satisfies

〈 ˆ〉 = 0 (4.36)

〈 ˆ† ˆ〉 =
NT∑

i=1

NT∑

j=1

〈ŝ†
i (0)ŝ j (0)〉 = NT. (4.37)

In the continuum limit,

ˆ = NT

L

∫ L

0
dz ŝ(z, 0) (4.38)

〈 ˆ† ˆ〉 = N2
T

L2

∫ L

0
dz′

∫ L

0
dz′′ 〈ŝ†(z′, 0)ŝ(z′′, 0)〉 (4.39)

and we can satisfy (4.36) and (4.37) by taking

〈ŝ(z, 0)〉 = 0 (4.40)

〈ŝ†(z′, 0)ŝ(z′′, 0)〉 = L
NT

δ(z′ − z′′). (4.41)

4.2.1 Approximation leading to the ARS field equation

Our considerations thus far presume that the field’s central frequency lies in the
vicinity of the atomic resonance in the sense that the detuning " is very small in
magnitude compared with ω and ω0. Let us now suppose instead that the field
frequency ω is very large compared with ω0. In this case, we must work with
the atomic operators σ̂x , σ̂y instead of the slowly varying ŝ. It follows from the
Hamiltonian (4.16) that

¨̂σ x + ω2
0σ̂x = −2dω0

σ̂z Ê ∼= −2dω0 Ê (4.42)

in the approximation σ̂z ∼= 1. The assumption ω & ω0 implies

¨̂σ x ∼= −2dω0 Ê (4.43)
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so that, from equation (4.18),
(

∂2

∂ t2 − c2 ∂2

∂z2 − ω2
p

)

Ê = 0. (4.44)

This is identical to the equation of motion for the quantum field in the ARS model
when we equate ω2

p to their m2. From this perspective, the ARS equation of
motion describes the interaction of the electromagnetic field with N unbound
electrons (ω " ω0) per unit volume. However, the usual plasma dispersion
formula n2 = 1 − ω2

p/ω
2 for the refractive index n is replaced, in this case,

by
n2 = 1 + ω2

p/ω
2. (4.45)

This is a consequence of the assumption σ̂z ∼= 1: had we assumed σ̂z ∼= −1, we
would have obtained the familiar plasma dispersion formula.

To describe the growth of the quantum noise with time in this model, we
write (4.44) in the form

∂2 Ê
∂τ1∂τ2

− m2

4
Ê = 0 (4.46)

where τ1 = t − z/c, τ2 = t + z/c. In terms of the independent variable
y = m

√
τ1τ2, equation (4.46) has solutions that are linear combinations of

the zero-order modified Bessel functions I0(y), K0(y). For large t , the vacuum
expectation value

〈Ê2(z, t)〉 ∝ I 2
0 (y) ∼ e2mt

2πmt
(4.47)

so that the quantum noise grows exponentially in time from the initial vacuum
fluctuations, the fluctuations present before the medium in the ARS model is
‘inverted’. This is the result cited after equation (4.5).

4.2.2 Signal and noise

We wish to determine to what extent the observation of the superluminal group
velocity considered by CKK will be affected by quantum noise. The system of
interest is described by the Heisenberg equations of motion (4.22) and (4.23). We
approximate σ̂z by 1, assuming that pulse durations τp and transit times L/c are
sufficiently small that de-excitation of the initially inverted atoms by radiation (or
any other decay process) is negligible. The situation here is different from that
describing the onset of SF in that (a) the detuning & is not zero but is instead large
and (b) the initial state of the field is not the vacuum but corresponds to a short
pulse of radiation from some external source.

The equation for ŝ(z, t) in the present model is

∂ ŝ
∂ t

= −i(& − iβ)ŝ − id
F̂ (4.48)
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or

ŝ(z, t) = ŝ(z, t0)e−i(!−iβ)(t−t0) − id
∫ t

t0
dt ′ F̂(z, t ′)ei(!−iβ)(t ′−t) (4.49)

t0 is some initial time, before any pulse is injected into the medium. We take
F̂(z, t0) = 0, although of course what this really means is that there is no non-
vanishing field or intensity in the medium at t0, so that for practical purposes
(expectation values) we can, in effect, ignore the operator F̂(z, t0) in the equation
for ŝ(z, t).

The pulse is assumed to have a central frequency ω and to have no significant
frequency components near the resonance frequency ω0: |!|τp > 1. We assume
that |!|τp is large enough that we can approximate (4.49) by integrating by parts
and retaining only the leading terms:

ŝ(z, t) ∼= ŝ(z, t0)e−i(!−iβ)(t−t0) − d ! + iβ
!2 + β2 F̂(z, t) − id

!2

∂ F̂
∂ t

. (4.50)

As will be clear from the analysis that follows, this approximation implies
undistorted propagation of the incident pulse at the group velocity vg, as assumed
by CKK.

From (4.22),

∂ F̂
∂z

+ 1
c

∂ F̂
∂ t

∼=
(

iNdω0

2ε0c

)
ŝ(z, t0)e−i(!−iβ)(t−t0) + g

2
F̂ + i[n(ω) − 1]ω

c
F̂

+
(

1
c

− 1
vg

)
∂ F̂
∂ t

(4.51)

where

g ≡ Nd2ω0

ε0 c
β

!2 + β2 (4.52)

is the gain coefficient for propagation of a field with frequency ω in the inverted
medium. We have used equation (4.6) for the refractive index n(ω) and (4.8)
for vg/c − 1. Writing F̂(z, t) = F̂ ′(z, t) exp(i[n(ω)−1]ωz/c) and ŝ(z, t0) =
ŝ′(z, t0) exp(i[n(ω)−1]ωz/c) yields an equation in terms of the primed variables in
which the term i[n(ω) − 1](ω/c)z associated with phase velocity is eliminated.
Then, ignoring for practical purposes the difference between the primed and
unprimed variables, we have

∂ F̂
∂z

+ 1
vg

∂ F̂
∂ t

= g
2

F̂ +
(

iNdω0

2ε0c

)
ŝ(z, t0)e−i(!−iβ)(t−t0) (4.53)

and, therefore,

F̂(z, t) = F̂(0, t − z/vg)egz/2 +
(

iNdω0

2ε0c

) ∫ z

0
dz′ ŝ(z′, t0)eg(z−z′)/2
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× e−i(!−iβ)[t−t0−(z−z′)/vg]θ(t − t0 − (z − z′)/vg)

≡ F̂s(0, t − z/vg)egz/2 + F̂n(z, t) (4.54)

where the subscripts ‘s’ and ‘n’ denote signal and noise, respectively. Here

F̂n(z, t) =
(

iNdω0

2ε0c

) ∫ z

0
dz′ ŝ(z′, t0)eg(z−z′)/2e−i(!−iβ)[t−t0−(z−z′)/vg]

× θ(t − t0 − (z − z′)/vg) (4.55)

is a quantum noise field associated with the quantum fluctuations of the atomic
dipoles.

To appreciate the significance of g as defined by equation (4.52), consider
the gain coefficient gR for a radiatively broadened transition of frequency ω0 and
radiative decay rate 1/τRAD = 2β. For light of frequency ω = ω0 − !,

gR = N S
τRAD

2β

!2 + β2 = Nd2ω0

ε0 c
β

!2 + β2 (4.56)

if we assume that all the N atoms per unit volume are in the upper state of
the amplifying transition. Thus, gR = g, i.e. g is just the gain coefficient for
amplification by stimulated emission. We note also that, from equation (4.8),

g = 2β

(
1
c

− 1
vg

)
(4.57)

in the case under consideration where the amplifying transition is radiatively
broadened and the detuning is large compared with the gain bandwidth.

The operator ŝ(z, t0) has the expectation-value properties described earlier.
These properties imply 〈F̂n(z, t)〉 = 〈F̂†

n (z, t)〉 = 0 and

〈F̂†
n (z, t)F̂n(z, t)〉 =

(
Ndω0

2ε0c

)2 L
NT

× e−2β(t−t0)
∫ z

z−vg(t−t0)
dz′ eg(z−z′)e2β(z−z′)/vg

=
(

Ndω0

2ε0c

)2 N
S

c
2β

[
egvgt − e−2βt

]
(4.58)

where we have used the relations (4.57) and NT = N SL and, to simplify the
notation, we have taken t0 = 0.

Since the atoms and field are initially uncorrelated, i.e.

〈F̂†(0, t − z/vg)ŝ j (t0)〉 = 〈F̂†
n (0, t − z/vg)〉〈ŝ j (t0)〉 = 0 (4.59)

we have, at the end of the amplifier,

〈F̂†(L, t)F̂(L, t)〉 = 〈F̂†
s (0, t − L/vg)F̂s(0, t − L/vg)〉egL + 〈F̂†

n (L, t)F̂n(L, t)〉.
(4.60)
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We define a signal-to-noise ratio

SNR(L, t) ≡ 〈F̂†
s (0, t − L/vg)F̂s(0, t − L/vg)〉egL

〈F̂†
n (L, t)F̂n(L, t)〉

= 〈F̂†
s (0, t − L/vg)F̂s(0, t − L/vg)〉egL

(dω0/2ε0c)2(Nc/2Sβ)[egL − e−2βL/vg]

= 〈F̂†
s (0, t − L/vg)F̂s(0, t − L/vg)〉

(dω0/2ε0c)2(Nc/2Sβ)[1 − e−2βL/c]

∼= 〈F̂†
s (0, t − L/vg)F̂s(0, t − L/vg)〉

(dω0/2ε0c)2 N L/S
. (4.61)

In the denominators, we have taken t = L/vg for the time over which
the atoms radiate and have used the fact that 2β(1/c − 1/vg)L = gL, the
difference of two numbers that themselves are small according to our assumption
that propagation times are small compared with the single-atom radiative decay
rate, is & 1.

The numerator in equation (4.61) can be related to the expectation value q
of the number of photons in the incident signal pulse as follows. The expectation
value of the incident signal intensity is

Is(0, t) = ε0vg〈F̂s(0, t)F̂s(0, t)〉 = I0e−t2/τ 2
p (4.62)

for a Gaussian pulse of duration τp. Requiring that the energy fluence, namely∫ ∞
−∞ dt Is(z, t), be q ω/S ∼= q ω0/S implies I0 = q ω0/(Sτp

√
π) and,

therefore,

〈F̂†
s (0, t − L/vg)F̂s(0, t − L/vg)〉 = q

ω0

ε0vgSτp
√

π
e−(t−L/vg)

2/τ 2
p . (4.63)

Thus,

SNR(L, t) = q
2τp

√
π

c
vg

e−(t−L/vg)
2/τ 2

p

(
4ε0 c

Nd2ω0 L

)

= q√
π

(
4c

ω2
p Lτp

)
c
vg

e−(t−L/vg)
2/τ 2

p

= q√
π

τR

τp

c
vg

e−(t−L/vg)
2/τ 2

p (4.64)

where we have used equation (4.15).
Among the criteria given by CKK for the observation of a superluminal

pulse is that ‘the probe-pulse duration [τp] must not exceed τR = 4c/Lω2
p’.

This criterion implies, from equation (4.64), that SNR(L, t) ≥ (q/
√

π)c/vg and,
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therefore, that it is possible, even for q ∼ 1, to have superluminal propagation
with SNR(L, t) > 1 if the pulse duration is short enough: τp < τRc/vg.

In order to relate this conclusion to ARS, we use equation (4.8) to write
(4.64) as

SNR(L, t) = q√
π

τp( vg
c − 1

) L
c #2τ 2

p
e−(t−L/vg)

2/τ 2
p . (4.65)

We see from this expression that, if we impose the ARS condition (2), i.e.
(vg/c − 1)L/c $ τp, then

SNR(L, t) % q√
π

1
(#τp)2 e−(t−L/vg)

2/τ 2
p (4.66)

so that, given also the condition on |#|τp discussed before equation (4.50),
the signal-to-noise ratio will be very small when the ARS condition for strong
distinguishability of superluminal propagation from propagation at the speed c is
satisfied.

In fact, if (vg/c − 1)L/c $ τp and, therefore, SNR(L, t) is very small for
q ≈ 1, then

t/τR = L/c
τR

= vg

c
L/vg

τR

>∼ vg

c
τp

τR
(4.67)

which, from (4.64), must be large. Then the noise associated with SF must be
exponentially large [equation (4.33)]. It follows that q must be exponentially large
in order to maintain a signal-to-noise ratio greater than unity. This is consistent
with the ARS conclusion that ‘for the signal amplitude to be larger than the
amplitude of the fluctuations at the observation time, the signal amplitude should
be exponentially large’ [139].

Our results are, therefore, in agreement with ARS in that, if we require the
separation of the superluminal pulse and a twin vacuum-propagated pulse to be
much larger than the pulse duration, the signal-to-noise ratio will be very small
at the one- or few-photon level. However, the results are not inconsistent with
CKK: even at the one-photon level, we can achieve a signal-to-noise ratio greater
than unity if this separation ([vg/c − 1]L/c) is smaller than the pulse duration τp
[equation (4.65)].

4.2.3 Physical origin of noise limiting the observability of superluminal
group velocity

Note that, when we set the time t in equation (4.34) for the short-time SF
noise intensity equal to the ‘observation time’ L/c, we obtain exactly the noise
intensity appearing in the denominator of equation (4.61). Thus, the quantum
noise that imposes limitations on the observability of superluminal group velocity
is attributable to the initiation of superfluorescence. We also note that the SF
noise propagates at the speed of light and is, therefore, delayed with respect to the
signal. This is a manifestation of a general result obtained by Segev et al [140].

Copyright © 2005 IOP Publishing Ltd.



Can the advance of a weak pulse exceed the pulsewidth? 123

4.2.4 Operator ordering and relation to ARS approach

Less obvious is the relation between the quantum noise we have considered—
which stems from the atomic dipole fluctuations characterized by equations (4.40)
and (4.41)—and the quantum noise of ARS, which is attributed to the quantum
fluctuations of the field.

To establish the relation to the ARS approach, we return to our calculation of
the noise intensity, using now anti-normally ordered field operators instead of the
normally ordered operators used before. Thus, we consider now the expectation
value 〈F̂(z, t)F̂†(z, t)〉 instead of 〈F̂†(z, t)F̂(z, t)〉. In this approach, the atomic
dipole fluctuations play no explicit role, as can be seen from equation (4.54) and
the fact that

〈ŝ(z′, t0)ŝ†(z′′, t0)〉 = 0 (4.68)

for excited atoms. In this case, however, the initially unoccupied modes of the
field make a non-vanishing contribution as a consequence of non-normal ordering:

〈F̂(0, t − L/vg)F̂†(0, t − L/vg)〉 =
∑

k

ωk

2ε0S#
〈âk(0)â†

k (0)〉eg(ωk)L

∼=
∑

k

ωk

2ε0S#
[g(ωk)L + 1] (4.69)

which follows from (4.17) and (4.19) and the approximation gL & 1 upon which
(4.64) is based. The contribution from the term that does not vanish as L → 0 can
be ignored, as it corresponds to vacuum quantum noise (energy 1

2 ωk per mode)
that is present even in the absence of the amplifier. In other words, the quantum
noise of the field in the presence of the amplifier is

〈F̂(0, t − z/vg)F̂†(0, t − z/vg)〉n ≡
∑

k

ωk

2ε0S#
g(ωk)L

→ #

2πc

∫
dω

ω

2ε0S#
g(ω)L

∼= π

(
ω0d
2ε0c

)2 N L
c

∫ ∞

0
dω

β

&2 + β2

(4.70)

where we have gone to the mode continuum limit, approximated ω by ω0 in the
numerator of the integrand, and used equation (4.52) for the gain coefficient.
Performing the integration, we obtain exactly the noise term appearing in the
denominator in the last line of (4.61). But now the noise is attributable to the
amplification of vacuum field fluctuations.

Thus, we can attribute the quantum noise that limits the observation of
superluminal group velocity to either the quantum fluctuations of the field in the
inverted medium, as ARS do, or to the quantum fluctuations of the inverted atoms,
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as in our derivation of the signal-to-noise ratio. The situation here is similar to that
in the theory of the initiation of SF, as discussed by Polder et al [142], or, as noted
by those authors, to the theory of spontaneous emission by a single atom [8].

4.2.5 Limit of very small transition frequency

Since the origin of noise in the optical amplifier is associated ultimately with
spontaneous emission, the question arises as to whether the signal-to-noise ratio
might be increased by employing a transition having a very small transition
frequency ω0 and, therefore, a very large radiative lifetime. Indeed, since ω2

p ∝
ω0, the second line of equation (4.64) suggests, at first glance, that SNR → ∞
in the limit ω0 → 0. However, equation (4.7) shows that vg → c in this limit:
the superluminal effect itself becomes weaker as the spontaneous emission rate is
made smaller.

In this connection, we invoke once again the form (4.65) of the signal-to-
noise ratio. If we assume |"|τp > 1 in order that the pulse does not undergo
substantial distortion as a consequence of strong absorption, then

SNR(L, t) < q
cτp

(vg − c)L/c
. (4.71)

In other words, the signal-to-noise ratio must be smaller than the number of
photons in the incident pulse mulitiplied by a factor equal to the length of the
vacuum-propagated pulse divided by the separation of the vacuum-propagated
pulse and the pulse emerging from the amplifier, independent of the the atomic
transition frequency or the radiative lifetime. At the one- or few-photon level, the
signal-to-noise ratio must, therefore, be less than unity under the ARS criteria for
the observation of a superluminal group velocity, regardless of the frequency or
strength of the amplifying transition.

4.2.6 Remarks

It may be useful to summarize the conclusions of this section briefly. We have
considered the effects of quantum noise on the propagation of a pulse with a
superluminal group velocity in an amplifying medium. In the case considered
by CKK [39], where an off-resonant short pulse of duration τp propagates with
superluminal group velocity vg in an optical amplifier, we calculated a signal-
to-noise ratio (SNR) and found that, for an incident pulse consisting of a single
photon, the SNR % 1 under the condition (vg/c − 1)L & τp assumed by ARS
[139] for strong discrimination between the pulse propagating in the amplifier
and a twin pulse propagating the same distance in vacuum. This result is fully
consistent with the conclusions of ARS based on general considerations and, in
particular, the reconstruction of the superluminal pulse from a truncated portion
of the initial wave packet. However, if we impose the weaker condition that
(vg/c − 1)L τp, then our conclusion is that SNR > 1 is possible. In this
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case, a superluminal group velocity is observable in the arrival statistics of many
photons, not per shot.

These conclusions are consistent with figure 2.7: if the pulse is advanced by
a time large compared with the pulse duration, then the output pulse is completely
determined by a very small leading tail of the incident pulse. If this leading tail
corresponds to a photon number less than one, then the entire output pulse is,
in effect, determined by quantum noise and, consequently, the SNR ratio will be
small [139].

We showed that, in the case of the optical amplifier, the quantum noise is
attributable to the onset of superfluorescence and could be associated either with
the quantum fluctuations of the field, along the lines of the ARS considerations,
or with the quantum fluctuations of the atomic dipoles.

4.3 Signal velocity and photodetection

As we now discuss, quantum noise associated with spontaneous emission also
acts effectively to retard the measured pulse by producing a background level
of irradiation that must be exceeded before it can be asserted that the pulse has
arrived.

We have defined a signal as a discontinuity such as a step-function turn-on
of the field (section 2.5). According to this definition, the signal velocity of light
is the velocity at which such a discontinuity propagates. Further consideration
raises the question of how to define a signal velocity for a smoothly varying field
described by an analytic function of time properly, for a very small portion of a
pulse’s leading edge can contain all the information about the entire pulse. More
to the point, this leading edge can extend infinitely back in time and make it
impossible to define unambiguously a signal arrival time.

In any event, this definition of a signal is not immediately applicable in the
laboratory, where it is impossible to realize the infinite bandwidth associated with
a step function. Moreover, this definition relies on purely classical concepts: in
practice, one cannot extend the arrival time of a signal to any time before the
detection of the first photon in a light pulse.

We now consider a more practical, operational definition of the signal
velocity based on standard photodetection theory [145]. We analyse this signal
velocity specifically for a superluminal group velocity in the case of a gain doublet
medium, as discussed in section 2.4 [49,50]. For the level scheme shown in figure
2.6, with the common detuning !0 of the Raman and probe fields from the excited
state |0〉 much larger than any of the Rabi frequencies or decay rates involved, we
can adiabatically eliminate all off-diagonal density-matrix terms involving state
|0〉. Then we obtain the following expression for the linear susceptibility as a
function of the probe frequency [49, 148]:

χ(ω) = M
ω − !ω + iγ

+ M
ω + !ω + iγ

(4.72)
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where γ > 0 and M > 0 is a two-photon matrix element whose detailed form
and numerical value are not required for our purposes.

Let us start by considering the detection of a ‘signal’ carried by a light pulse.
We assign a time window T centred about a pre-arranged time t0 at the detector
and monitor the photocurrent produced by the detector. We assume there is a
background level of irradiation that causes a constant photocurrent i0 when no
light pulse is sent. We further assume that a larger photocurrent i1(t) is registered
when a light pulse is received. If the detector’s integrated photocurrent

∫
dt i1(t)

rises above the background level by a certain amount, we assert that a ‘signal’
has been received. The time when this preset level of confidence is reached in the
detection may be defined as the time of signal arrival.

From this point of view, the observable used to define the arrival of the signal
carried by a light pulse is the integrated photon number

Ŝ(L, t) = η

∫ t

t0−T/2
dt1 Ê (−)(L, t1)Ê (+)(L, t1). (4.73)

Ê (+)(L, t1) and Ê (−)(L, t1) are, respectively, the positive- and negative-
frequency parts of the electric field operator at the exit port (z = L) of the
medium and t0 = Tc + L/c, where Tc is the time corresponding to the pulse
peak. T/2 is half the time window assigned to the pulse, typically a few times
the pulsewidth. η is a constant involving the quantum efficiency, and will be
taken to be unity. The expectation value 〈Ŝ(L, t)〉 gives the number of photons
that have arrived at the detector’s surface at an arbitrary time t . If 〈Ŝ1(L, t)〉
and 〈Ŝ0(L, t)〉 are, respectively, the photon number expectation value with and
without an input pulse being present, then the photocurrent difference for an ideal
detector is 〈Ŝ1(L, t)〉 − 〈Ŝ0(L, t)〉. The second-order variance of the integrated
photon number, 〈#2 Ŝ(L, t)〉, gives the noise power due to quantum fluctuations.
We, therefore, define an optical signal-to-noise ratio SNRo [146]

SNR(L, t) = (〈S1(L, t)〉 − 〈S0(L, t)〉)2

〈#2S(L, t)〉 . (4.74)

We define the arrival time ts of a signal as the time when SNR(L, t) reaches some
preset threshold level determined by the allowed error rate.

The positive-frequency part of the electric field operator of interest can be
written as

Ê (+)(z, t) = 1√
2π

e−iω0(t−z/c)
∫ ∞

0
dωâ(ω)e−iω(t−z/vg) (4.75)

where ω0 is the carrier frequency of the pulse and [â(ω), â†(ω′)] = δ(ω − ω′).
We assume plane-wave propagation in the z direction and that the group velocity
approximation is valid.
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In the experiments of interest [49], the transparent anomalously dispersive
medium is a phase-insensitive amplifier, so that the general input–output relation
can be applied [93, 147]:

âout(ω) = g(ω)âin(ω) +
√

|g(ω)|2 − 1 b̂†(ω). (4.76)

Here âin(ω) and âout(ω) refer, respectively, to the input (z = 0) and output
(z = L) ports of the amplifier and b̂(ω) is a bosonic operator ([b̂(ω), b̂†(ω′)] =
δ(ω−ω′)) that commutes with âin(ω) and â†

in(ω) and whose appearance in (4.76)
ensures that the commutation relations for the field operators âout and â†

out are
preserved. |g(ω)|2 is the power gain factor obtained from the imaginary part of
χ(ω).

Consider, first, the case of propagation over the distance L in vacuum, where
g(ω) = 1. We assume that the initial state |ψ〉 of the field is a coherent state such
that â(ω)|ψ〉 = α(ω)|ψ〉 for all ω, where α(ω) is a c number. For such a state,

Ê (+)(0, t)|ψ〉 = α(t)e−iω0t |ψ〉 (4.77)

where
α(t) = π−1/4(Np/τ )1/2e−(t−Tc)

2/2τ 2
(4.78)

and Np is the average number of photons in the initial (Gaussian) pulse of duration
τ . It follows that

SNRvac(L, t) = 〈Ŝ1(L, t)〉vac = SNRvac(0, t − L/c). (4.79)

In other words, the point SNRvac(L, t) = constant propagates at the velocity c
without excess noise.

Next we treat the case of pulse propagation over the distance L in the
anomalously dispersive medium, using equation (4.76) with g(ω) %= 1 and the
same initially coherent field. We obtain, in this case,

〈Ŝ1(L, t)〉 − 〈Ŝ0(L, t)〉 = |g(0)|2〈Ŝ1(0, t − L/vg)〉vac (4.80)

where

〈Ŝ0(L, t)〉 = 1
2π

∫ t

t0−T/2
dt1

∫ ∞

0
dω [|g(ω)|2 − 1] (4.81)

is the photon number in the absence of any pulse input to the medium. The fact
that 〈Ŝ0(L, t)〉 > 0 is due to amplified spontaneous emission (ASE) [146]: in the
experiment of interest, the ASE is due to spontaneous Raman scattering.

For a probe pulse with sufficiently small bandwidth, the gain factor obtained
from (4.72) is

|g(0)|2 = e4π M Lγ /λ(*ω2+γ 2) (4.82)

and the effective signal 〈Ŝ1(L, t)〉 − 〈Ŝ0(L, t)〉 is proportional to the input signal
〈Ŝ1(0, t − L/vg)〉vac with time delay L/vg determined by the group velocity vg.
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In an anomalously dispersive medium, vg = c/(n +ω dn/dω) can be greater than
c or negative, resulting in a time delay

L
vg

=
[

1 − ω0 M
"ω2 − γ 2

("ω2 + γ 2)2

]
L
c

(4.83)

which is shorter than the time delay the pulse would experience upon propagation
through the same length in vacuum: it can also become negative. In other words,
the effective signal intensity defined here can be reached sooner than in the case
of propagation in vacuum.

In order to determine with confidence when a signal is received, however,
we must evaluate the SNR. Again using the commutation relations for the field
operators, we obtain for the fluctuating noise background

〈"2 Ŝ(L, t)〉 ≡ 〈Ŝ2(L, t)〉 − 〈Ŝ(L, t)〉2

= |g(0)|2〈Ŝ1(0, t − L/vg)〉vac + 〈Ŝ0(L, t)〉

+ 2|g(0)|2 Re
[ ∫ t

t0−T/2
dt1

∫ t

t0−T/2
dt2

× α∗(t1 − L/vg)α(t2 − L/vg)F(t1 − t2)
]

+
∫ t

t0−T/2
dt1

∫ t

t0−T/2
dt2|F(t1 − t2)|2. (4.84)

Here

F(t) = 1
2π

∫ ∞

−∞
dω [|g(ω)|2 − 1]e−iωt (4.85)

is a correlation function for the ASE noise. The four terms in equation (4.84) can
be attributed to amplified shot noise, spontaneous emission noise, beat noise, and
ASE self-beat noise, respectively [149]. Figure 4.1 shows the evolution of these
noise terms within the time window T . Amplified shot noise is seen to dominate
when the input pulse is strong.

Using equations (4.80) and (4.84), we compute SNRmed(L, t) for the
propagation through the anomalously dispersive medium. In figure 4.2, we
plot the results of such computations for SNRmed(L, t) as a function of time
on the output signal. For reference, we also show the SNR for the identical
pulse propagating over the same length in vacuum. It is evident that the pulse
propagating in vacuum always maintains a higher SNR. In other words, for the
experiments of interest here [49, 148], the signal arrival time as defined here is
delayed, even though the pulse itself is advanced compared with propagation over
the same distance in vacuum.

To further examine the signal velocity, let us require that, at a time t ′, the
SNR of a pulse propagating through the medium be equal to that of the same
pulse propagating through vacuum at a time t:

SNRmed(L, t ′) = SNRvac(L, t). (4.86)
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Figure 4.1. Evolution of quantum noise terms. Curves 1–5 indicate noise associated with
terms 1–4 in equation (4.84) and the total noise, respectively. Parameters used in the figure
are adopted from the experiments reported by Wang et al [49,148]. There are 106 photons
per pulse. Noise retards the detection of the signal by reducing the signal-to-noise ratio.
From [145], with permission.

Figure 4.2. Signal-to-noise ratios for light pulses propagating through the gain medium
and through vacuum, SNRmed(L , t) and SNRvac(L , t). From [145], with permission.
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Figure 4.3. Delay in signal arrival time δt = t ′ − t as a function of the gain coefficient.
Curves (a) and (b) are for (t −Tc)/τ = −3 and −1, respectively. Curve (a) is delayed more
because at the early stage of the pulse, ASE self-beat noise produces noise much greater
than the shot noise level. From [145], with permission.

Then we obtain a time difference δt = t ′ − t that marks the retardation due to
quantum noise. #t = t ′ − t + L/c gives the propagation time of the light signal
and L/#t gives the signal velocity. In figure 4.3, we plot δt as a function of gain
for (t − Tc)/τ = −3 and −1. This corresponds to cases where the signal point is
set at three and once times the pulsewidth on the leading edge of the pulse. We
also plot for reference the pulse advance L/vg. It is evident that the retardation in
the SNR far exceeds the pulse advance. In other words, the quantum noise added
in the process of advancing a signal effectively impedes the detection of the useful
signal defined by the signal-to-noise ratio5.

To summarize: we have presented an operational definition, based on
photodetection, of the velocity of the signal carried by a light pulse. We have
found for the experiments of Wang et al [49, 148] that, while the pulse and the
effective signal are both advanced via propagation at a superluminal (or negative)
group velocity, the signal velocity defined here is still bounded by c. The physical
mechanism that limits the signal velocity is quantum fluctuation: because the
transparent, anomalously dispersive medium is realized using closely placed gain
lines, amplified quantum fluctuations introduce additional noise that effectively
reduces the SNR in the detection of the signals carried by the light pulse.

5 Zhu et al (2003) (S-Y Zhu, private communication) have obtained numerical results that differ
slightly from those shown in [145], without affecting the conclusions therein.
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Along similar lines, Wang et al [150] have found in numerical studies that
the partial coherence of a pulse can change its group velocity from superluminal
to subluminal.

4.4 Absorbers

The analyses in the two preceding sections applied to media with gain. In the case
of absorbing media, a superluminal pulse will typically suffer a large decrease
in amplitude, which adds to the difficulty of observing a large relative pulse
advancement. Consider the example of a Lorentzian lineshape. From equations
(1.33) and (1.34), and the expression a(ω) = 2nI(ω)ω/c for the absorption
coefficient, it follows that the group index

ng(ω) = nR(ω) + ω

(
dnR

dω

)

ω

= 1 + c
2γ

a(ω)

[
#2 − γ 2

#2 + γ 2 + #

ω

]

. (4.87)

γ for an atomic vapour is typically ∼ 2π × 109 s−1, in which case ca(ω)/2γ ∼
2.4a(ω). Thus, a group index that differs greatly from unity (e.g. a large and
negative value implying a superluminal group velocity) requires a large value of
the absorption coefficient and, therefore, a strong attentuation of any superluminal
pulse6. In fact, there appear to be no fast-light experiments—in either absorbers
or amplifiers—where pulse advancements greater than about 25% of the pulse
duration have been observed.

4.5 What is a signal?

It is not usually necessary to specify precisely what is meant by a signal7. A red
traffic light tells a driver to stop and probably no one would argue that it thereby
represents a signal. But a driver sitting at a red light is not learning anything new
about whether he should remain stopped or drive on; that is, the red traffic light is
not sending any information. Information might be said to be transmitted to the
driver when the light turns from red to green. When we say that ‘no signal can be
transmitted faster than the speed of light in vacuum’, we mean that no information
can be transmitted faster than c. In other words, a signal in the sense used here
is some measurable quantity that carries information, i.e. that transmits data that
could not have been predicted with certainty beforehand. Thus, if our driver saw
the traffic light turn from green to red as he approached the intersection, and
knows that the light changes every 30 s, then he is not acquiring any information
in this sense when the light turns back to green.
6 The Garrett–McCumber theory of superluminal propagation of a Gaussian pulse in an absorber is
reviewed in section 2.3.
7 A dictionary defines a signal as ‘a detectable physical quantity or impulse (as a voltage, current, or
magnetic field strength) by which messages or information can be transmitted’.
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Similarly, the arrival of the peak of a smooth superluminal pulse is not giving
us any information that was not already contained in the leading edge of the pulse
by analytic continuation (figure 2.7). New information appears only at points
of non-analyticity on the waveform. Such points propagate at the velocity c, no
matter how large the group velocity. Thus, as has been emphasized repeatedly, no
signal (information) can be propagated with a velocity greater than c.

The principal message of this chapter is that the measurable advance in time
(Tadv) of a superluminal pulse is reduced by noise arising from the field, the
propagation medium, or the detector. We have analysed in some detail the effect
of quantum noise in reducing Tadv in two specific examples.

The limiting effects of noise can be understood without detailed analyses.
Figure 2.7 shows that, as the pulse advance is made larger, the advanced pulse is
an analytic continuation of an increasingly small portion of the leading edge of
the input pulse. Thus, for a large pulse advance relative to the pulsewidth, the
truncated portion of the input pulse from which the advanced pulse is determined
can correspond to an energy near or below the one-photon level, in which case
the advanced pulse is determined primarily by quantum noise. In section 4.2.2,
we obtained a signal-to-noise ratio in the case of an amplifying medium and
confirmed, for this case, the general conclusion of Aharonov et al [139] that,
for a very input weak pulse, the observed output will be dominated by noise.
We showed that the quantum noise could be attributed either to the field or to
the atoms constituting the medium. In other words, it should not be possible to
observe an ‘optical tachyon’ except in the sense of an average over many shots,
as in the single-photon tunnelling experiments of Chiao and Steinberg [44]. It
should not be possible to observe a large relative pulse advance. (In the case of an
absorbing medium, the advanced pulse will be even weaker than the small leading
edge in the case of a large pulse advancement.)

The integrated photocurrent of a detector must exceed a certain threshold
level, depending on the noise level and the allowed error rate, before it can register
a pulse. Obviously, this has the effect of reducing the measured advance of a
superluminal pulse. As discussed in section 4.3 for the experimental parameters
of Wang et al [49], and as observed in the experiment of Centini et al [136], the
measured advance implies that a superluminal pulse has a signal velocity less than
c. The signal in this case is the detected arrival of the pulse.

Einstein causality requires that information encoded on a superluminal pulse
cannot be transmitted with a velocity greater than c. This limit has been
beautifully demonstrated in the experiments of Stenner et al [137]. Due to noise
and detection latency, the measured signal (information) velocity is less than
c. Theory based on Maxwell’s equations without consideration of noise or the
detection process predicts that the signal velocity should be exactly c, just as in
the case of a Sommerfeld–Brillouin front.

The importance of noise in considerations of superluminal propagation and
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causality has also been emphasized by Wynne [151]8. He considers the definition
of information as a point of non-analyticity to be unsatisfactory because it ignores
noise, whereas our point of view is that this definition is satisfactory for a
description of the basic underlying (classical or quantum) physics, especially as
it relates to Einstein causality. Wynne points out that, although an analytic pulse
can, in principle, be ‘extrapolated into the future’, extrapolation to a significant
degree (compared with the pulsewidth) can require a rather high-order Taylor
expansion. Performing this Taylor expansion in practice will, therefore, require
pulse samples at a correspondingly high number of points, and [151]

[E]ach of these samples must contain a finite number of photons (in fact
rather more than one photon) for this procedure to work. In addition,
the sampling will have to be performed quickly with respect to the
pulsewidth but slowly enough so that enough photons are detected to
obtain meaningful samples. No matter how carefully the sampling and
extrapolation are performed, the procedure will always result in a finite
probability of making an error in predicting the future. This error can
be made arbitrarily small by using a signal pulse with a peak amplitude
that approaches infinity. However, to extrapolate a significant amount
of time into the future (for example, ten pulsewidths) may require an
unfeasibly large number of photons in the signal pulse. Extrapolation
into the future only works for analytic and noiseless signals.

This bears on the question raised in section 4.2. But based on his definition
of information (which is in accord with the definition used in communication
theory), Wynne’s conclusions are stronger than ours. He concludes that ‘the only
situation in which one might say that useful superluminal information exchange
has taken place is if the superluminal advance is larger than the interval over which
the input pulse is defined’ [151]. The (unstated) conclusion seems to be that a
measured time advance greater than the pulsewidth is impossible, regardless of
the pulse intensity. We noted earlier that there appear to be no superluminal pulse
propagation experiments in which an advance greater than about 25% of the full
pulsewidth has been achieved.

4.6 Remarks

Before concluding the part of this book dealing mainly with fast light, I am
impelled to repeat the apology in the preface to all the authors whose work I
have not cited. The literature on the subject is simply too large for me to absorb
8 Wynne’s definition of a signal differs from ours. He defines a signal as ‘any detectable waveform,
which may contain information. Superluminal signal propagation does not necessarily imply
superluminal transfer of information.’ According to our definition, a signal is a carrier of information.
This is also the definition adopted by Chiao and Steinberg [43], for instance. In reading the literature
relating to superluminal pulses and causality, one should take care to note which definition is being
used.
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and to report sensibly on a sizable portion of it would require more than one book.
It is appropriate, however, to briefly mention a few more experiments relating to
some of the topics we have touched upon9.

An experiment that certainly deserves mention is the early observation by
Segard and Macke [153] of negative group velocity at millimetre wavelengths. In
fact, these authors obtained a pulse advance on the order of 40% of the half-width-
at-half-maximum pulsewidth, with modest pulse distortion. Tanaka et al [154]
have observed comparable pulse advances and a group velocity of −0.04c near
an absorption line of rubidium vapour. Macke and Segard [155] have discussed
some of the difficulties involved in realizing larger pulse advancements.

Superluminal pulse propagation has been observed in photonic grating media
[156] and photonic crystals [157].

It should also be noted that negative group delays have been observed in
electronic circuits. Mitchell and Chiao [158] have constructed an electronic
bandpass amplifier with negative group delays at most frequencies for a
modulated voltage pulse, and Kitano et al [159] have demonstrated negative group
delays using an operational amplifier and an RC feedback circuit without any
modulation of a carrier. These experiments can be analysed in the frequency
domain using the linear input–output relations discussed at the beginning of
section 1.3 [158].

Except for the discussion in chapter 2, we have not given much attention
to the theoretical treatment of ‘superluminal’ behaviour in tunnelling. The
arguments as to why there is no violation of Einstein causality are very much the
same as in the theory of (non-evanescent) superluminal optical pulse propagation.
We refer the reader to the review article by Chiao and Steinberg [43] and the many
references therein, and to papers by Büttiker and Thomas [160] and Winful [161].

9 A collection of papers with many references to the literature may be found in [152].

Copyright © 2005 IOP Publishing Ltd.



Chapter 5

Slow light

Group velocities can be extremely small compared with the speed of light (c)
in vacuum. We begin this chapter by very briefly describing some early work
in which pulses of light were slowed significantly compared with c. Then we
discuss the phenomenon of electromagnetically induced transparency, which was
the first physical mechanism employed to reduce the speed of a light pulse to
virtually a snail’s pace (‘slow light’). Finally we describe other experiments and
other physical processes that have been used to realize slow light.

5.1 Some antecedents

The observation of group velocities significantly less than c is not, in itself, new.
We briefly recall here some experiments demonstrating group velocities smaller
than c.

Near an absorption resonance the fact that dn/dω < 0 (anomalous
dispersion) implies that the group velocity vg can be superluminal. In
section 2.4.1, we mentioned experiments in which the pulse repetition frequency
of a mode-locked pulse train in a resonant absorber indicated group velocities
very slightly greater than c. Near an amplification resonance, the sign of dn/dω
is reversed (cf section 2.2) and vg < c. Casperson and Yariv [162] inferred group
velocities ∼ c/2.5 from the repetition frequency of mode-locked pulses in a 3.51-
µm xenon discharge laser. The amplifying transition has high gain and a narrow
Doppler resonance owing to the large mass of xenon. This results in a large value
for dn/dω and the small group velocities inferred.

Recall that, in the wings of an absorption resonance, the dispersion is normal
(dn/dω > 0) and, therefore, vg < c. For a strong transition with small
linewidth, it is then possible to realize very small group velocities with a pulse
central frequency well removed from the absorption resonance. Group velocities
∼ vg/14 in rubidium vapour have been demonstrated in this way [163]. The fact
that the pulse frequencies are out in the wings of the absorption spectrum also
results in relatively small attenuation of the slowed pulse.
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Still smaller pulse propagation velocities are realized in self-induced
transparency [164]. Pulse delays corresponding to peak velocities ∼ c/1000
[165] and smaller have been observed.

We now turn our attention to some of the physics involved in realizing—and
controlling—dramatically smaller group velocities.

5.2 Electromagnetically induced transparency

Extremely small group velocities have been obtained based on quantum
interference effects that cause greatly reduced absorption and very rapid variation
with frequency of the refractive index.

Let us begin with a very simple model for the sort of quantum interference
that can lead to zero absorption. We consider a three-state ‘atom’ with equal
transition dipole moments (µ) and equal applied electric field amplitudes ( ) at
two equal transition frequencies (figure 5.1). The effect of an applied field on the
atom in this model is described by the interaction Hamiltonian

HInt = −µ (|3〉〈1| + |3〉〈2|) + h.c. (5.1)

Define two superposition states |C〉 = |1〉 + |2〉 and |NC〉 = |1〉 − |2〉 and note
that 〈3|HInt|C〉 = −2µ and 〈3|HInt|NC〉 = 0.

The ‘non-coupled’ state |NC〉 is a dark state: an atom in such a superposition
state does not interact with the applied field. When the applied field is turned
on our three-state atom can be pumped into state 3, from which it can go by
spontaneous emission into either the coupled state |C〉 or the non-coupled state
|NC〉. Once in the latter state, it is trapped. Eventually the atom will find
itself in the (non-absorbing) dark state by this process of ‘coherent population
trapping’ [166].

Coherent population trapping was first observed by Alzetta et al [167] using
a level scheme like that shown in figure 5.2. The states 1 and 2 in their experiment
corresponded to hyperfine states of sodium which were driven into a coherent
superposition state such that emission from state 3 was eliminated.

Figure 5.1. Three-state ‘atom’ in which the two allowed transitions 1 ↔ 3 and 2 ↔ 3
have the same transition frequency and electric dipole moment.
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Figure 5.2. Three-level ! scheme for realizing coherent population trapping and
electromagnetically induced transparency. Transitions are allowed between states 1 and
3 and between states 2 and 3 but not between states 1 and 2. As a consequence of coherent
population trapping in the presence of the coupling field (ωc), a probe field at frequency
ωp can propagate without absorption.

Coherent population trapping in the presence of a coupling field can lead to
electromagnetically induced transparency (EIT) [94, 168] for a probe field—i.e.
the probe can propagate without absorption while the atoms remain unexcited.
This is achieved when the probe and coupling frequencies differ by that of a
non-allowed transition (figure 5.2). Associated with EIT is a rapidly varying
refractive index and, consequently, a very small group velocity and, furthermore,
the refractive index is unity and the group velocity dispersion is zero at line
centre [169], as we will show.

The Hamiltonian for the three-level system of figure 5.2 is

Ĥ = E1σ̂11 + E2σ̂22 + E3σ̂33 −µ23(σ̂23 + σ̂32)E(t)−µ13(σ̂13 + σ̂31)E(t) (5.2)

where E j is the energy eigenvalue associated with the state | j〉 in the absence of
any atom–field coupling. We are using the σ̂ operators employed in chapter 3, i.e.
σ̂i j = |i〉〈 j | at time t = 0, and we let these operators evolve in time according to
the Heisenberg equation of motion

i ˙̂σ i j = [σ̂i j , Ĥ ]. (5.3)

As in chapter 3, we denote operators by a caret (∧). µi j is the electric dipole
matrix element between states i and j and we take it to be real without any loss of
generality. We treat the applied electric field E(t) classically. From the definition
of the operators σ̂i j at t = 0, and the orthogonality of the states |1〉, |2〉, and |3〉,
it is easily seen that

[σ̂i j , σ̂kl ] = δ j k σ̂il − δil σ̂kj . (5.4)

Since these commutation relations are satisfied at t = 0, they are satisfied at all
times (by unitary time evolution). Using (5.3) and (5.4), therefore, we obtain the
Heisenberg equations of motion

˙̂σ 12 = − iω21σ̂12 + i
(µ23σ̂13 − µ13σ̂32)E(t) (5.5)
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˙̂σ 23 = − iω32σ̂23 + i
µ23 E(t)(σ̂22 − σ̂33) + i

µ13 E(t)σ̂21 (5.6)

˙̂σ 13 = − iω31σ̂13 + i
µ23 E(t)σ̂12 + i

µ13 E(t)(σ̂11 − σ̂33) (5.7)

where ωi j = (Ei − E j )/ .
For the applied electric field, we write1

E(t) = 1
2 c[e−iωct + eiωct ] + 1

2 p[e−iωpt + eiωpt ] (5.8)

where subscripts ‘c’ and ‘p’ refer to the ‘coupling’ field and the probe field,
respectively (figure 5.2).

Since σ̂12, σ̂23, and σ̂13 oscillate most strongly at frequencies near ω21, ω32,
and ω31, respectively, we will make a rotating-wave approximation and replace
equations (5.5)–(5.7) by

˙̂σ 12 = − iω21σ̂12 + i
2

µ23 cσ̂13eiωct − i
2

µ13 pσ̂32e−iωpt (5.9)

˙̂σ 23 = − iω32σ̂23 + i
2

µ23 c(σ̂22 − σ̂33)e−iωct + i
2

µ13 pσ̂21e−iωpt (5.10)

˙̂σ 13 = − iω31σ̂13 + i
2

µ23 cσ̂12e−iωct + i
2

µ13 p(σ̂11 − σ̂33)e−iωpt . (5.11)

We are interested in the expectation values of these operators and, in
particular, in the expectation value 〈σ̂13 + σ̂31〉 that determines the induced dipole
moment and, therefore, the refractive index for the probe field. Since equations
(5.9)–(5.11) are linear, we can effectively replace the operators by expectation
values, i.e. σ̂i j → 〈σ̂i j 〉 ≡ σi j . We can simplify further by assuming that the
probe field is sufficiently weak that σ11 ∼= 1, σ22 = σ33 = σ23 = σ32 ∼= 0. Thus,
for weak probe fields, we write

σ̇12 = − i(ω21 − iγ12)σ12 + i
2 cµ23σ13eiω32t (5.12)

σ̇13 = − i(ω31 − iγ13)σ13 + i
2

µ23σ12 ce−iω32t + i
2

µ13 pe−iωpt . (5.13)

We have made two additional modifications here of equations (5.9)–(5.11). First,
we have assumed that the coupling field is exactly resonant with the 2 ↔ 3
transition, i.e. ωc = ω32. Second, we have introduced the damping rates γ12
and γ13, which are proportional to the homogeneous linewidths of the 1 ↔ 2 and
1 ↔ 3 transitions, respectively.

To solve these equations, it is convenient to introduce new variables S12 and
S13 defined by writing

σ12 = S12e−i(ωp−ω32)t σ13 = S13e−iωpt . (5.14)
1 We could allow p to be complex but this would have no real consequence.
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Then (5.12) and (5.13) imply

Ṡ12 = − i(! − iγ12)S12 + i
2

µ23 cS13 (5.15)

Ṡ13 = − i(! − iγ13)S13 + i
2

µ13 p + i
2

µ23 cS12 (5.16)

where ! = ω31 − ωp is the detuning of the probe field from the 1 ↔ 3 transition.
Equations (5.15) and (5.16) have the following steady-state solution for S13:

S13 = (µ13 p/2 )(! − iγ12)

(! − iγ13)(! − iγ12) − (µ23 c/2 )2 . (5.17)

The induced electric dipole moment at the probe frequency is

p = µ13(σ13 + σ31) = µ13(S13e−iωpt + S31eiωpt )

= 1
2
α(ωp) pe−iωpt + 1

2
α∗(ωp) peiωpt (5.18)

where the polarizability α(ωp) is given by

α(ωp) = αR(ωp) + iαI(ωp) (5.19)

with

αR(ωp) = µ2
13 !(!2 − 1

4&2
c − γ12γ13) + !γ12(γ12 + γ13)

[!2 − γ12γ13 − 1
4&2

c]2 + !2(γ12 + γ13)2
(5.20)

αI(ωp) = µ2
13 γ12(γ12γ13 + 1

4&2
c) + !2γ13

[!2 − γ12γ13 − 1
4&2

c]2 + !2(γ12 + γ13)2
. (5.21)

In the approximation that the refractive index n ∼= 1, n = 1 + Nα/2ε0, where N
is the number density of atoms. This implies that the (real) refractive index and
the (power) absorption coefficient are given by

n(ωp) = 1 + N
2ε0

αR(ωp)

= 1 + N
2ε0

µ2
13 !(!2 − 1

4&2
c − γ12γ13) + !γ12(γ12 + γ13)

[!2 − γ12γ13 − 1
4&2

c]2 + !2(γ12 + γ13)2
(5.22)

a(ωp) = ωp

cε0
NαI(ωp)

= N
ε0

ωp

c

µ2
13 γ12(γ12γ13 + 1

4&2
c) + !2γ13

[!2 − γ12γ13 − 1
4&2

c]2 + !2(γ12 + γ13)2
(5.23)

respectively. Here, &c = µ23 c/ is the Rabi frequency characterizing the
coupling field at the 2 ↔ 3 transition. Note that if γ12 = 0, i.e. if there were
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no ‘dephasing’ of the 1 ↔ 2 transition, the absorption coefficient would vanish
(when ωp = ω31), corresponding to a perfect quantum interference effect.

Suppose that " = 0, i.e. that the probe field is exactly resonant with the
1 ↔ 3 transition. Then

n(ωp) = 1 (5.24)

and

a(ωp) = 2π N
ε0λp

µ2
13 γ12

γ12γ13 + 1
4'2

c
(5.25)

where λp = 2πc/ωp is the probe wavelength. Now the damping rate γ12, being
associated with the dipole non-allowed transition 1 ↔ 2, is usually very small, so
that the absorption at the probe frequency can be very small if '2

c " γ12γ13
2.

In other words, the effect of a strong coupling field at the 2 ↔ 3 transition
frequency is to produce EIT—very little absorption—at the probe frequency near
the 1 ↔ 3 transition. For large values of 'c, the absorption spectrum has two
peaks separated by 'c (figure 5.3).

It is interesting to compare the absorption coefficient (5.25) with the
absorption coefficient at the 1 ↔ 3 transition frequency when there is no coupling
field ('c = 0):

a(ω31) = 2π N
ε0λp

µ2
13 1

γ13
(5.26)

which is the well-known expression for the absorption coefficient for a
homogeneously broadened transition at the centre of a Lorentzian profile.
Comparison of (5.25) and (5.26) shows the crucial role for EIT of a strong
coupling field in addition to the probe field.

We have assumed that ωc = ω32. More generally, we obtain for the
polarizability

α(ωp) = µ2
13 " − "c − iγ12

(" − iγ13)(" − "c − iγ12) − 1
4'2

c
(5.27)

where "c = ω32 − ωc. This implies maximal transmission for " = (1 −
γ12/γ13)"c. For high atomic number densities N , the transmission

T (ωp) = exp(−NαI(ωp)kL) (5.28)

(k = ωp/c, L = propagation length) is significant only for frequencies very
close to the maximal transmission frequency. The transmission can be estimated

2 Such damping rates for forbidden transitions can be as small as a few Hz for atoms at rest. Larger
damping rates are associated with transit-time broadening arising from the fact that the atoms spend a
finite amount of time in the applied field. γ12 in this case can be reduced by introducing a noble buffer
gas.
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(a)

(b)

Figure 5.3. n(ωp) − 1 for (a) "c = 0, (b) "c = 6γ13, and a(ωp) for (c) "c = 0, (d)
"c = 6γ13. The detuning is −$/γ13 = [ωp − ω31]/γ13. n(ωp) − 1 is given in units of
Nµ2

13/2ε0 γ13, and a(ωp) in units of Nωpµ2
13/ε0c γ13. In each case, γ12/γ13 = 0.02.
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(c)

(d)

Figure 5.3. (Continued.)

by expanding (5.27) about this frequency: one obtains a transmission that is a
Gaussian function of ! with a half-width [170, 171]

!ωtr ∼ #2
c√

Nµ2
13ωpγ13L/ε0 c

∼ #2
c

γ13

1√
ηkL

∼ vg

L

√
ηkL (5.29)

where we have used γ13 = 1
2 A31, A31 = µ2

13ω
3
p/3πε0 c3 being the rate of
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spontaneous emission at the 3 → 1 transition, and

η = 3Nλ3
p/4π2. (5.30)

This result assumes γ12 " γ13 and %2
c # γ12γ13, |&c|γ12,&

2
cγ12/γ23. Note

that this transparency width decreases with increasing atomic density N . Using
the fact that the absorption coefficient for a radiatively broadened transition is
a0 = A31λ

2 N/2π in the absence of EIT, we can write (5.29) equivalently as

&ωtr ∼ vg

L

√
a0L = 1

τd

√
a0 L (5.31)

where τd = L/vg is the pulse delay in traversing a distance L.
Note also that the group velocity cannot be reduced to zero—i.e. the

probe pulse cannot be stopped—for this would imply a vanishing window of
transparency. In other words, if we attempt to make the group velocity go to zero,
the transparency window becomes smaller than the spectral width of the pulse and
there will be absorption rather than transparency. As discussed in the following
chapter, however, the group velocity can go to zero if the Rabi frequency of the
coupling field is made to vary appropriately in time.

Although the refractive index at ω = ωp is unity, dn/dω can be large and,
therefore, the group velocity of a probe pulse can be very small. In the limit of
large %c, we obtain, from (5.22),

n(ωp) ∼= 1 − 2N
ε0

µ2
13

%2
c
& (5.32)

and

vg(ωp) = c
n(ωp) + ωp(dn/dω)ωp

∼= cε0%
2
c

2Nωpµ
2
13

(5.33)

for 2Nωpµ
2
13/ cε0%

2
c # 1. A numerical example of the calculation of vg from

this formula is given later.
In figure 5.3, we plot the refractive index and the absorption coefficient

[equations (5.22) and (5.23)] versus detuning & for a large value of %c and for
%c = 0 and, in figure 5.4, we plot the group index ng (vg = c/ng) for the same
parameters. Note that the group index takes on large values near & = 0, where
the EIT effect is greatest.

EIT was first observed by Boller et al [172] in strontium vapour, the level
scheme for which was of the *-type shown in figure 5.2 but with level 3 lying
above the first ionization potential. The review articles by Harris [168] and Boyd
and Gauthier [173] provide some historical background and many references
relating to EIT.

As already noted, EIT can be interpreted as a consequence of coherent
population trapping. The atoms are, in effect, pumped into the dark state, i.e.
the transparency at the probe frequency is induced by driving the atoms with the
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(a)

(b)

Figure 5.4. ng − 1 versus frequency detuning −!/γ13 = [ωp − ω31]/γ13 for (a) $c = 0
and (b) $c = 6γ13. ng − 1 is in units of Nµ2

13/2ε0 γ13. γ12/γ13 = 0.02.

probe and coupling fields. Once the probe field is switched on, this pumping into
the dark state occurs on a time scale on the order of the radiative lifetime of the
excited state 3. If the probe field is turned on slowly (adiabatically) compared
with the Rabi frequency $c, however, EIT occurs after a time ∼ $−1

c , which can
be significantly shorter than the radiative lifetime.
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It is interesting to note that the dark-state preparation can be done by
applying the coupling field before the probe field is on. Because there is initially
no population in the states 2 and 3 that are coupled by the coupling field, this
circumstance is somewhat counterintuitive but it can be understood in terms of
adiabatic preparation. Turning on the coupling field before the probe results in a
dark eigenstate of the driven atom that is identical to the ground state. If the probe
and coupling fields are turned on adiabatically, the Si j follow the field variations
in a quasi-steady-state way and the atom remains in the dark eigenstate [174]. In
fact, the system remains in the dark state as long as the difference in the probe and
coupling pulse envelopes varies slowly. In particular, if the temporal envelopes
are identical, the atoms remain in a dark state even if the pulses vary rapidly in
time. The pulses, in this case, are said to be ‘matched’.

We have assumed that the probe pulse is weak and can be treated to first order
in its effect on the atoms. If the probe is not weak, it can result in the propagation
of a two-color pulse pair, called an ‘adiabaton’, that propagates with a single
group velocity and can assume arbitrary pulse shapes, depending on the input
pulses [175]. Non-adiabatic components of this pulse pair can make it unstable
and, after a sufficiently large distance of propagation, can result in two matched
pulses [176].

5.3 Slow light based on EIT

Associated with the narrow EIT spectral hole for the probe field is a rapid variation
of the refractive index with frequency, a large value of the group index ng (cf
figure 5.4) and, therefore, a very small group velocity. Harris et al [169] estimated
that for a 208Pb vapour with a density of 7 × 1015 atoms cm−3, a coupling
laser wavelength of 405.9 nm and a Rabi frequency ∼ 20 Ghz (laser intensity
283 kW cm−2), an EIT probe pulse at 283 nm would have a group velocity
vg = c/250.

A group velocity c/165 in Pb vapour was subsequently observed by Kasapi
et al [177] under EIT conditions with 55% transmission (absorption coefficient
∼= 600 cm−1) of the probe field in a 10-cm cell: without the coupling laser, the
cell was ‘nearly optically inpenetrable’ (absorption coefficient ∼= 0.026 cm−1).
They also observed that the transmitted field was nearly diffraction-limited.

An EIT pulse propagating without distortion at a group velocity vg $
c undergoes substantial spatial compression compared with its free-space
propagation, as noted by Harris et al [169]. Consider, for example, a Gaussian
input pulse

0(z = 0, t) = Ae−t2/τ 2
p . (5.34)

Undistorted propagation at group velocity vg implies that the field in the EIT
medium is

(z, t) = 0(t − z/vg) = Ae−(t−z/vg)
2/τ 2

p (5.35)
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compared with the field

(z, t) = 0(t − z/c) = Ae−(t−z/c)2/τ 2
p (5.36)

in free space. The EIT pulse is seen to undergo a spatial compression by the factor
c/vg = ng. Note that the peak electric field remains the same as in free space if
there is no absorption. The energy density of the field at frequency ω is [equation
(2.61)]

uω = n
2µcvg

|Eω|2 ∼= ng

2µ0c2 |Eω|2 = 1
2
ε0ng|Eω|2 (5.37)

for n ∼= 1 and µ ∼= µ0 (as is the case at optical frequencies). Thus, the electric
field amplitude is the same as in free space while the energy density increases
by the factor ng and the intensity [equation (2.62)] |Sω| = vguω is the same as
in free space. Harris and Hau [178] have discussed the fact that large nonlinear
susceptibilities can accompany EIT. Note from the preceding remarks that any
enhancement of nonlinear optical effects does not arise from an enhancement of
the electric field strength, as also noted by Boyd and Gauthier [173].

5.3.1 Slow light in an ultracold gas

The first slowing down of light by many orders of magnitude—to 17 m s−1—was
observed by Hau et al [179] in experiments in which the EIT medium was an
ultracold gas of sodium atoms. In these experiments, sodium atoms are cooled
and trapped and optically pumped into the (F = 1, MF = −1) state of the
3S1/2 ground level (figure 5.5) and then put into a magnetic trap and evaporatively
cooled to a temperature T ∼ 450 nK with a number density ∼ 3 × 1012 cm−3.
A linearly polarized coupling beam creates the quantum interference that allows
a left-circularly polarized probe beam (figure 5.5), applied a few microseconds
after the coupling beam and obtained from the same dye laser, to propagate with
little absorption (EIT) at right angles to the coupling beam.

Doppler broadening is negligible and the width of the EIT spectral hole is
much smaller than the natural linewidth of the 1 ↔ 3 transition. This, of course,
is responsible for the extremely strong variation of the refractive index with probe
frequency and, therefore, the extremely small observed group velocities inferred
from pulse delay measurements.

Using $c = µ23 c/ = (µ23/ )
√

2Ic/cε0, we can write equation (5.33) as

vg(ωp) = µ2
23

µ2
13

Ic

N ωp
(5.38)

where Ic is the coupling field intensity. For a probe wavelength of 589 nm, a
coupling field intensity of 12 mW cm−2, and an atomic number density N =
3.3 × 1012 cm−3, we obtain from this formula

vg(ωp) = µ2
23

µ2
13

× 110 m s−1 = 73 m s−1 (5.39)
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Figure 5.5. Transitions between hyperfine states of the sodium D2 line in the experiments
of Hau et al. From [179], with permission.

where we use µ2
23/µ

2
13 = 2/3 based on the Wigner–Eckart theorem. For a

coupling field intensity of 12 mW cm−2 and a peak atomic number density of
3.3 × 1012 cm−3, the experimentally inferred group velocity was 32.5 m s−1,
corresponding to a time delay of several pulsewidths (figure 5.6). When the
temperature was reduced sufficiently to obtain a Bose–Einstein condensate, the
increase in the atomic density is predicted by equation (5.38) to result in a smaller
group velocity and, in this case, a group velocity vg = 17 m s−1 was observed.
Pulse compression by the factor c/vg implied that the ultraslow pulses had a
spatial extent as small as 43 µm.

5.3.2 Slow light in a hot gas

Slow light is a consequence of a large value of dn/dω associated with a sharp
resonance. It might, therefore, be surmised that slow light cannot be realized in
a hot gas, where atomic motion broadens the resonance (Doppler broadening).
However, a very narrow EIT resonance can, in fact, be obtained in a hot gas if
Doppler and other line-broadening mechanisms can be suppressed.

Defining the detuning δ = ω21 − (ωp − ωc), which reduces to # when
ωc = ω32, we can write the polarizability (5.27) as

α(ωp) = 2µ13S13/ p =
3ε0λ

3
p

8π2 A31
iγ12 − δ

(γ12 + iδ)(γ13 + i#) + 1
4)2

c
. (5.40)

where we have used the equation A31 = 8π2µ2
13/3ε0 λ3

p for the radiative decay
rate of the 3 → 1 transition.

This expression for the polarizability does not take atomic motion into
account. An atom moving with velocity v along the direction of the probe field
sees a field of frequency ωp − kpv, where kp = n(ωp)ωp/c. Likewise an atom
with velocity v along the direction of the coupling field sees a field of frequency
ωc − kcv, where kc = n(ωc)ωc/c. Assuming the coupling and probe fields are
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Figure 5.6. Experimental data of Hau et al showing the input pulse (open circles) and the
pulse transmitted by an ultracold gas of length 229 ±3 µm (filled circles). The transmitted
pulse delay of 7.05 ± 0.05 µs corresponds to a group velocity of 32.5 ± 0.5 m s−1.
From [179], with permission.

propagating in the same direction, we can obtain the polarizability α(ωp, v) for an
atom with velocity v along the propagation direction by replacing # in (5.40) by
ω31−(ωp−kpv) = #+kpv and δ by ω21−(ωp−kpv−ωc +kcv) = δ+(kp−kc)v:

α(ωp, v) =
3ε0λ

3
p

8π2 A31
iγ12 − (δ + (kp − kc)v

[γ12 + i(δ + (kp − kc)v)][γ13 + i(#p + kpv)] + 1
4)2

c
.

(5.41)
The polarizability α(ωp) for an atomic gas is then obtained by averaging
α(ωp, v) over the (one-dimensional) Maxwell–Boltzmann velocity distribution
f (v)(

∫ ∞
−∞ dv f (v) = 1) [180]:

α(ωp) =
3ε0λ

3
p

8π2 A31

×
∫ ∞

−∞
dv f (v)

iγ12 − (δ + (kp − kc)v

[γ12 + i(δ + (kp − kc)v)][γ13 + i(#p + kpv)] + 1
4)2

c

(5.42)

The integration simplifies if we make the approximation kp = kc = k and replace
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the (Gaussian) distribution f (v) by the Lorentzian form [180]

f (kv) = !ωD/πk

(kv)2 + !ω2
D

(5.43)

where !ωD is the half-width-at-half-maximum (HWHM) of the distribution.
Then (5.42) becomes [180]

α(ωp) =
3ε0λ

3
p

8π2 A31
iγ12 − δ

(i! + γ13 + !ωD)(iδ + γ12) + 1
4)2

c
. (5.44)

Using the approximation n ∼= 1 + Nα/2ε0 for n ∼= 1, this implies the (power)
absorption coefficient

a(ωp) = 2ωp

c
nI(ωp) = 2π N

ε0λp
αI(ωp)

=
3Nλ2

p

4π
A31

γ12

γ12(γ13 + !ωD) + 1
4)2

c
(5.45)

for ! = δ = 0, i.e. for ωp = ω31 and ωc = ω32. The group velocity vg = c/ng
follows similarly from the group index

ng =
3Ncλ2

p

8π
A31

1
4)2

c

[γ12(γ13 + !ωD) + 1
4)2

c]2
(5.46)

for large )c (ng # 1). For 1
4)2

c # γ12(γ13 + !ωD), the group velocity is

vg = c
ng

= cε0)
2
c

2Nωpµ
2
13

(5.47)

which is identical to (5.33), which was obtained for stationary atoms. In other
words, if the Rabi frequency )c is large enough, it is possible to realize ultraslow
group velocities in a hot gas as well as in a cold gas. Equation (5.45) shows that
the absorption coefficient can likewise be very small.

The reason for this can be seen from (5.41). For co-propagating coupling and
probe fields with kp = kc, as we have assumed, the only velocity dependence of
α(ωp, v) is in the term γ13+i(!p+kpv) in the denominator and, when )c is much
larger than γ12(γ13+!)D), the Doppler width !ωD has a negligible effect on the
velocity-averaged polarizability (5.44). Unlike the case in cold gases, however,
this ‘Doppler-free’ feature requires co-propagating coupling and probe fields.

The prediction of ultraslow group velocities based on EIT with co-
propagating fields in a hot gas was verified in the experiments of Kash et al [180].
From pulse delay measurements, they inferred a group velocity ∼ 90 m s−1 in
87Rb gas at 360 K. The 87Rb density (2 × 1012 cm−3) was comparable to the
densities in the cold-gas experiments of Hau et al [179].
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It should be noted that, in these experiments, the dominant contribution to
γ12 comes from the transit-time broadening associated with the time spent by
the atoms in the 2-mm-diameter laser beam. γ12 was reduced to below 1 kHz
using 30 Torr of He buffer gas. A larger beam diameter would reduce γ12 further
and would presumably result in even smaller probe group velocities. A magnetic
shield employing a high-permeability metal reduced the effect of stray magnetic
fields that produce a Zeeman splitting of the hyperfine sublevels of sodium that
are (2F + 1)-fold degenerate in the absence of a magnetic field.

5.4 Group velocity dispersion

In chapter 2 we noted that one of the arguments in the past against observing
superluminal group velocities was that, when vg > c, a pulse undergoes so
much distortion in its shape that the concept of group velocity no longer makes
sense. Experiments showed that this argument was incorrect, that pulses could, in
fact, propagate with a superluminal group velocity and with little distortion. The
slow pulses in the experiments described in the preceding section also propagate
without significant distortion of their temporal profiles [cf equations (5.34) and
(5.35)]. In this section, we briefly review the conditions necessary to realize
distortionless linear pulse propagation [181, 182]. These considerations apply to
both fast light and slow light.

Using equation (1.83), we write

∂

∂z
+ 1

vg

∂

∂ t
+ i

2
β

∂2

∂ t2 = 0 (5.48)

where we assume that the terms involving third and higher derivatives of with
respect to time are negligible, which is usually the case except for extremely short
pulses. We have defined the group velocity dispersion (GVD) parameter

β = d2k
dω2 = 2

c
dn
dω

+ ω

c
d2n
dω2 (5.49)

which is understood to be evaluated at the central frequency of the pulse [ωL
in equation (1.83)]. In terms of the new independent variables η = z and
τ = t − z/vg, we can rewrite (5.48) as

∂

dη
+ i

2
β

∂2

∂τ 2 = 0. (5.50)

If β = 0 (no group velocity dispersion), a pulse will propagate without
distortion at the group velocity. GVD will cause the pulse to deviate from its
initial shape. This is clear from the definition of β:

β = d
dω

(
dk
dω

)
= d

dω

(
1
vg

)
= 1

c
dng

dω
= − c

v2
g

dvg

dω
. (5.51)
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Thus, if β > 0(< 0), the group velocity decreases (increases) with increasing
frequency. Different frequency components of a pulse will propagate with
different velocities and the pulse will not propagate without distortion at a well-
defined group velocity.

One way to estimate the degree of pulse distortion is to compare equation
(5.50) to the paraxial wave equation for a monochromatic field of wavelength
λ = 2π/k (see, for instance, [57]):

∂

∂z
− i

2
1
k

∂2

∂x2 = 0 (5.52)

where we consider variations along only one direction (x) transverse to the
direction (z) of beam propagation. If the beam at z = 0 has a width ∼ a in
the transverse plane, then after a propagation distance z, it will have a width

%x ∼ z
λ

a
. (5.53)

Now equation (5.50) for the propagation of a plane wave in a dispersive medium
has the same form as (5.52). The identifications η ↔ z, τ ↔ x , and β ↔ λ/2π

imply from (5.53) that, if a pulse has an initial temporal width τp, it will have a
width

%t ∼ L
|β|
τp

(5.54)

after propagating a distance L in a dispersive medium. We define a characteristic
propagation distance LGVD at which the pulse spread becomes comparable to the
initial pulse duration (%t ∼ τp):

LGVD ≡
τ 2

p

|β| . (5.55)

Near the probe resonance, the refractive index n(ω) in EIT varies linearly
with ω: d2n/dω2 = 0 [equation (5.32)] and, therefore,

β = 2
c

dn
dω

. (5.56)

Then
L

Lgvd
= L|β|

τ 2
p

= 2L
cτ 2

p

∣∣∣∣
dn
dω

∣∣∣∣ = 2
ωτp

|L/vg − L/c|
τp

(5.57)

where we have used the fact that n = 1 at the probe resonance. The second factor
is the ratio of the pulse delay (compared with vacuum propagation) to the pulse
duration, and is ∼ 1 or less in all reported slow-light experiments. The first factor
involves the ratio of the optical period to the pulse duration and is obviously very
small. Thus,

L
Lgvd

% 1 (5.58)
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i.e. the distance of propagation in the experiments is much smaller than the
distance at which GVD and pulse distortion are significant. For this reason, slow-
light pulses in the EIT experiments described in the preceding section propagate
with little distortion. The same considerations apply to the fast-light experiments
described in chapter 2, where the pulse advance is smaller than the pulsewidth.

5.5 Slow light in solids

Solid materials would be preferable in possible applications of slow light. The
difficulty with using solid-state media for realizing slow light with EIT is the
large (compared with gases) damping rates that broaden spectral features and
preclude the very large values of dn/dω that can occur in ultracold gases with
co-propagating (Doppler-free) coupling and probe fields.

Certain insulators doped with rare earths, however, exhibit narrow absorption
features and spectral hole burning and, in particular, EIT [183] and slow light
[184] have been observed using Pr-doped Y2SiO5 at 5 K. In the slow-light
experiments, the coupling and probe fields propagate at right angles and the
crystal becomes transparent as a consequence of optical pumping by the linearly
polarized fields. The spectral hole in the absorption profile then prevents EIT but a
third ‘re-pump’ field at a different frequency results in a narrow absorption region,
or ‘anti-hole’, centred at the spectral hole produced by the probe and coupling
fields. Within such an anti-hole, EIT can occur at the probe frequency. Turukhin
et al [184] have measured pulse delays > 65 µs in a 3-mm crystal, corresponding
to a group velocity of 45 m s−1.

It has also been possible to observe slow light in remarkably simple
experiments using a room-temperature solid [185, 186]. The physical basis
for slow light in this case—coherent population oscillations [187]—is entirely
different from EIT and it is appropriate, therefore, to review it here.

5.5.1 Coherent population oscillations

Unlike EIT, the approach of Bigelow et al [185, 186] for slowing light can be
understood using a two-level model for the propagation medium. The equations
for a two-level atom in an applied electric field E(t) can be obtained from the
three-level model of section 5.2 by taking µ23 = 0. Then equation (5.7) reduces
to

˙̂σ 13 = −iω31σ̂13 + i
µ13 E(t)(σ̂11 − σ̂33). (5.59)

For the operator ŵ(t) ≡ σ̂33(t) − σ̂11(t), we obtain from the Hamiltonian (5.2)
and the commutation rule (5.4) the Heisenberg equation of motion

˙̂w = −2i
µ13 E(t)(σ̂13 − σ̂31). (5.60)
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As in section 5.2, we can replace the operators by their expectation values in
the semiclassical approach in which the electric field E(t) is treated classically.
Denoting 〈σ̂13〉 by σ (t), 〈ŵ(t)〉 by w(t), µ13 by µ, and ω31 by ω0, we write
equations (5.59) and (5.60) more simply as

σ̇ = −iω0σ − i
µE(t)w(t) (5.61)

and

ẇ = −2i
µE(t)(σ − σ ∗). (5.62)

We will be interested in the case in which the two-level atoms are driven by
a bichromatic field

E(t) = 1
2 [Ede−iωdt + Epe−iωpt ] + c.c. (5.63)

In the rotating-wave approximation (RWA), we ignore the terms varying as eiωdt

and eiωpt in (5.61) and replace that equation by

σ̇ (t) = −iω0σ − i
2

µ[Ede−iωdt + Epe−iωpt ]w(t) (5.64)

and, similarly, we replace (5.62) by

ẇ(t) = − i
µσ (t)[E∗

d eiωdt + E∗
p eiωpt ] + i

µσ ∗(t)[Ede−iωdt + Epe−iωpt ] (5.65)

i.e. we retain only the terms that are consistent with the slow variation of w(t)
compared with the frequencies ω0,ωd, and ωp. As in section 5.2, we introduce,
phenomenologically, damping rates that we denote here by γ1 and γ2:

σ̇ (t) = − i(ω0 − iγ2)σ − i
2

µ[Ede−iωdt + Epe−iωpt ]w(t) (5.66)

ẇ(t) = − γ1[w(t) − w] − i
µσ (t)[E∗

d eiωdt + E∗
p eiωpt ]

+ i
µσ ∗(t)[Ede−iωdt + Epe−iωpt ]. (5.67)

γ2 = 1/T2 is proportional to the homogeneous linewidth of the transition,
whereas γ1 = 1/T1 is the rate at which the population difference between the
upper and lower levels relaxes to its equilibrium value w in the absence of any
applied field.

If we assume that the probe field Ep is weak and treat it to first order, it
can be seen by inspection of equations (5.66) and (5.67) that the solution for the
population difference w(t) will have the form

w(t) = w(0) + w(δ)e−iδt + w(−δ)eiδt (5.68)
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where δ ≡ ωp−ωd. In other words, the population difference of the two levels has
components that oscillate at the beat frequency ωd−ωp between the strong driving
field Ed and the probe field Ep—coherent population oscillation at the beat
frequency. These population oscillations are small if the population relaxation
rate γ1 is small compared with the beat frequency, for then the population cannot
follow the intensity oscillations at the beat frequency. In other words, the beat
frequency should be small compared with the population relaxation rate in order
for coherent population oscillations to occur.

The steady-state solution of equations (5.66) and (5.67) for σ has frequency
components at nωd + mωp, where n, m are integers. But if the probe field Ep is
weak and we treat it only to first order in solving for σ , we find that σ oscillates
primarily at the frequencies ωd, ωp, and 2ωd − ωp, as can be seen by inspection
of equations (5.66), (5.67), and (5.68). In this approximation, the steady-state
solution for σ is found straightforwardly to be3

σ = σ (ωd)e−iωdt + σ (ωp)e−iωpt + σ (2ωd − ωp)e−i(2ωd−ωp)t (5.69)

where

σ (ωd) =
1
2%dw

ωd − ω0 + iγ2
(5.70)

σ (ωp) = %pw

2D

[
(ωp − ωd + iγ1)(ω0 + ωp − 2ωd + iγ2)

−
1
2%2

d(ωp − ωd)

ωd − ω0 − iγ2

]
(5.71)

σ (2ωd − ωp) =
1
4%2

d%
∗
pw(ωp − ωd + 2iγ2)

D(ωd − ω0 − iγ2)
. (5.72)

The Rabi frequencies of the drive and probe fields are defined by %d = µEd/ ,
%p = µEp/ and we have also defined

w = [(ωd − ω0)
2 + γ 2

2 ]w
(ωd − ω0)2 + γ 2

2 + γ2%
2
d/γ1

(5.73)

D = (ωp − ωd + iγ1)(ωp − ω0 + iγ2)(ω0 + ωp − 2ωd + iγ2)

− %2
d(ωp − ωd + iγ2). (5.74)

If ωd = ω0, γ2 $ %d, |δ|, and w = −1, equation (5.71) simplifies to [185]

σ (ωp) = i%p

γ2

[
1

1 + %2
d/γ1γ2

− %2
d
γ1

γ2

1 + iδ/β
δ2 + β2

]

(5.75)

3 These solutions were obtained previously by a number of authors. See, for instance, Bloembergen
and Shen [188] or Mollow [189].
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where
β = γ1[1 + #2

d/γ1γ2]. (5.76)

Equation (5.75) implies the polarizability [cf equation (5.18)]

α(δ) = iµ2/ γ2

1 + I0

[
1 − I0(1 + I0 + iδ/γ1)

(δ/γ1)2 + (1 + I0)2

]
(5.77)

where [185]
I0 ≡ #2

d/γ1γ2 = Id/Isat. (5.78)

Id is the driving field intensity and Isat is the saturation intensity of the two-
level transition. The second term in brackets in equation (5.75) is attributable
to coherent population oscillations.

5.5.2 Spectral hole due to coherent population oscillations

Under the assumptions made in deriving (5.77), the power absorption coefficient
at the probe frequency is [190]

a(δ) = 2ωp

c
nI(δ) = 2ωp

c
NαI(δ)/2ε0 = a0

1 + I0

[
1 − I0(1 + I0)

(δ/γ1)2 + (1 + I0)2

]

(5.79)
where

a0 = Nωpµ
2

ε0 cγ2
(5.80)

is the (unsaturated) absorption coefficient at ωp = ωd(δ = 0). The second term
in brackets gives rise to a spectral hole and is associated with coherent population
oscillations .

An interesting feature of (5.79) is that it predicts a spectral hole in the
absorption profile of a homogeneously broadened transition. Moreover, this hole
is of width ∼ γ1, the population relaxation rate, and can be very small. In
fact, holes as narrow as 37 Hz were observed by Hillman et al [191] in room-
tempertaure ruby. In their experiment an argon ion laser at 514.5 nm was resonant
with the transition from the ground state to the broad 4F2 absorption band of ruby.
Population excited in this band decays very rapidly (within a few ps) to the levels
2A and E , which decay (slowly, with a lifetime ∼ 1 ms) to the ground state. The
ruby crystal, thus, acts in effect as two-level system (figure 5.7). The laser was
amplitude modulated with a modulation depth ∼ 0.05 and the two weak sidebands
served as the probe, with the carrier acting as the strong driving field. The driving
and probe fields satisfy the equations

dI0

dz
= − a0 I0

1 + I0
(5.81)

and
dIp

dz
= −a(δ)Ip (5.82)
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(a)

(b)

Figure 5.7. Level scheme in ruby in the experiments of Hillman et al [191]. (a) The broad
level 3 excited by an Ar+ laser decays very rapidly to an intermediate level 2. (b) Since
level 2 decays slowly to the ground state, the ruby acts in effect as a two-level (1 ↔ 3)
system with a small upper-level decay rate.

in the plane-wave approximation. Solution of these equations gave good
agreement with the experimental results and, in particular, with the observed
variation of the probe attenuation with the modulation frequency. At low laser
powers (∼ 25 mW), the observed spectral hole had a width of 37 Hz, whereas at
higher powers (∼ 1 W) approaching the saturation intensity (∼ 1.5 kW cm−2),
the hole was power broadened.
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5.5.3 Slow light in room-temperature ruby

The refractive index that follows from (5.77) is

n(δ) = 1 + NαR(ωp)/2ε0 = 1 + ca0

2γ1ωp

I0

1 + I0

δ

(δ/γ1)2 + (1 + I0)2 (5.83)

from which the group index

ng = n(δ) + ωp
dn
dδ

(5.84)

can be calculated. In experiments of Bigelow et al [185], the field input to the
medium was amplitude modulated as in the experiments of Hillman et al [191].
In this case, the group index associated with the probe can be taken to be [185]

n(mod)
g = nd + ωp

2δ
[n(δ) − n(−δ)]

= nd + ca0

2γ1

I0

1 + I0

[
1

(1 + I0)2 + (δ/γ1)2

]
(5.85)

where nd is the refractive index at the drive frequency.
The experimental setup of Bigelow et al [185] is indicated in figure 5.8. The

beam emerging from the ruby crystal and the input beam are stored on a digital
oscilloscope and compared to determine the pulse delay and the pulse amplitudes.
From the pulse delay, which was small in these experiments compared with the
pulsewidths, it was inferred that the group velocity in the 7.25-cm ruby was as
small as 57.5 ± 0.5 m s−1. This value was obtained when the input drive power
was 0.25 W, which is the power at which the spectral hole is deepest according to
numerical simulations. These simulations were performed by integrating (5.81)
and using the result in the model for the dispersion based on equation (5.85),
letting a0 and γ1 = 1/T1 be free parameters. The values a0 = 1.17 cm−1 and
T1 = 4.45 ms, consistent with other measurements on ruby, gave good fits to

Figure 5.8. Experimental setup of Bigelow et al. From [185], with permission.
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the measured pulse delays and the probe attenuation and, thus, confirmed that
coherent population oscillations are the physical basis for the slow light and
the spectral hole. The measured width of the spectral hole (half-width-at-half-
maximum 1/2πT1) was 35.8 Hz at low laser powers, in good agreement with the
measurements of Hillman et al [191].

Experiments were also performed in which single intense pulses without
modulation were observed to propagate with little pulse distortion and with
ultraslow group velocities. The longest pulses had the largest delays, with a
30 ms pulse delayed by 0.71 ms, corresponding to vg ∼ 100 m s−1. The
theory previously outlined, which assumes cw drive (pump) and probe fields,
is not directly applicable but the fact that the longer pulses (containing smaller
frequency components) have longer delays is consistent with expectations based
on the theory: ‘These relatively intense pulses can be thought of as producing
their own pump field and are thus self-delayed’ [185].

These single-pulse experiments are especially interesting because, as noted
by the authors, they are thus far unique in that ‘a separate pump beam is not
required for generating ultraslow light’. Moreover, they can be explained using a
simple two-level model. From equations (5.66) and (5.67) with an applied electric
field

E(z, t) = (z, t)e−iωt (5.86)

σ (z, t) = S(z, t)e−iωt (5.87)

and ω = ω0, we have

∂S
∂ t

= − γ2S − iµ
2

w (5.88)

∂w

∂ t
= − γ1(w + 1) − 2

γ2

(
µ| |)2

w (5.89)

where we have taken w = −1 for the case of an absorber. For ruby, the half-
width-at-half-maximum homogeneous linewidth γ2/2π is much greater than the
population decay rate γ2 (γ −1

2 ∼ 4.45 ms [185]). Then we can approximate S by
−iµ w/2 γ2 and equation (5.89) by

1
γ1

∂w

∂ t
= −(w + 1) − Fw (5.90)

where
F = (µ| |/ )2/γ1γ2 = I/Isat. (5.91)

The equation for the propagation of the (slowly varying) field amplitude is [cf
equation (6.8)]

∂

∂z
+ 1

c
∂

∂ t
∼= iNµω

ε0
S ∼= Nµ2ω

2ε0 γ2
w (5.92)
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or
∂ F
∂z

+ 1
c

∂ F
∂ t

= a0 Fw (5.93)

where a0 = Nµ2ω/ cε0γ2 is the small-signal (power) absorption coefficient.
Numerical integration of the simple equations (5.90) and (5.93) yields results

in reasonable accord with experiment. In these computations, we have assumed
an initial field intensity

F(z = 0, t) = F0e−t2/τ 2
p . (5.94)

Figure 5.9 shows this initial intensity compared with the intensity obtained after
a propagation distance of 7.25 cm, as in the experiments [185]. We have assumed
an initial peak intensity equal to the saturation intensity, i.e. F0 = 1.0. Note that,
as observed experimentally, the pulse retains its Gaussian shape as it propagates
through the absorber. Note also that the (ultraslow) group velocity, defined as the
propagation distance divided by the time delay of the pulse peak compared with
free-space propagation, varies with intensity and, therefore, with the propagation
distance. The intensity remains Gaussian and retains essentially the same pulse
duration as the initial pulse. Similar results are obtained for a range of initial
intensities.

Such computations were performed independently by Agarwal and Dey
[192] for both two- and three-level models. For initial peak intensities less than
about three times Isat, the two- and three-level models give comparable results for
the group velocity.

Assuming F0 = 0.22, we compute group velocities 306, 161, 112,
and 96 m s−1 for pulse durations of 5, 10, 20, and 30 ms, respectively,
compared with the experimental results 300, 159, 119, and 102 m s−1. The
computed transmission (figure 5.9) is consistent with the experimentally observed
transmission ∼ 0.1%. Of course an accurate comparison of theory and
experiment would have to take into account the focusing geometry and other
factors but nevertheless, these results indicate that these single-pulse experiments
demonstrating ultraslow group velocities are well described by a simple model
that does not require atomic dipole coherence but which is based essentially on a
simple rate equation (5.90) for the medium.

The propagation of optical pulses in resonant media has been studied in many
experiments since the 1960s. The fact that the results of Bigelow et al can be
explained by such simple and frequently employed models for a saturable medium
strongly suggests that at least some of these experiments involved ultraslow light.

5.5.4 Fast light and slow light in a room-temperature solid

Bigelow et al [186] have also performed experiments in room-temperature
alexandrite in which both fast light and slow light have been demonstrated,
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(a)

(b)

Figure 5.9. Results of numerical solution of equations (5.90) and (5.93) with F0 = 1.0:
(a) initial intensity; (b) output intensity; (c) peak intensity versus distance of propagation;
and (d) group velocity versus distance of propagation.

depending on the laser wavelength. Like the slow-light experiments in room-
temperature ruby, these experiments are simpler than previous experiments on
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(c)

(d)

Figure 5.9. (Continued.)

fast light and slow light.
In alexandrite, the Cr+3 ions that replace the Al+3 ions in the host BeAl2O4

crystal are at sites with either mirror symmetry or inversion symmetry. Ions at
the mirror sites have a T1 time of 290 µs, whereas those at the inversion sites
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Figure 5.10. Energy levels of the Cr+3 ions at mirror sites and inversion sites in
alexandrite. From [186], with permission.

have a T1 of ∼ 50 ms (figure 5.10). The inversion sites are seen to have a level
structure similar to that used to obtain slow light in ruby [185]. At a wavelength of
488 nm, these sites exhibit an extremely narrow (8.4 Hz, ∼ 1/2πT1) spectral hole
and, using again the amplitude modulation technique [185], Bigelow et al [186]
measured a probe delay corresponding to a group velocity as small as 91 m s−1

in the 4-cm alexandrite crystal.
For Cr+3 ions at the mirror sites, there is an inverse saturation effect

associated with absorption from the excited level (figure 5.10) [193]. In other
words, because population in the excited level can be lost to another excited
level, the absorption can increase with increasing power levels, resulting in an
absorption anti-hole. This results in a change in the sign of the group index and,
therefore, the probe should propagate with a time advance (fast light). Bigelow
et al [186] observed a spectral anti-hole of width 612 Hz (= 1/2πT1) and a
group index of −3.75 × 105 (vg = −800 m s−1) at a wavelength of 476 nm
where the mirror sites dominate. As in the previous experiments with ruby, the
theory based on coherent population oscillations gave very good agreement with
the experimental data for the probe attenuation and group index for both slow
light and fast light.

5.6 Remarks

There is much current interest in ultraslow light and our intention in this chapter
has not been to give an up-to-date account of activity in this field but rather to
describe some of the basic physics underlying some of the earliest experiments.
As already noted, the interested reader may find other references as well as
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other perspectives in the reviews by Harris [168] and Boyd and Gauthier [173].
Among the references to early work, we should mention a paper by Tewari and
Agarwal [194] in which the possibility of modifying the linear dispersion of a
probe by applying a strong pump field was studied theoretically. Xiao et al [195]
studied experimentally the dispersion associated with EIT in a hot Rb gas and,
from the measured dispersion properties, it was inferred that the group velocity of
the probe was c/13. It should also be noted that Budker et al [196] have reported a
group velocity of 8 m s−1 in room-temperature 85Rb vapour. The ultraslow group
velocity in this case results from an extremely narrow nonlinear magneto-optic
resonance.

What about applications? The study of slow light has mainly been done at
the basic physics level but some potential applications have been noted, including
the possibility of controllable optical delay lines in fibre-optic networks. Another
possibility is discussed in the following chapter, where we discuss in some detail
the degree to which group velocity can be controlled.
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Chapter 6

Stopped, stored, and regenerated light

Light cannot only be dramatically slowed: it can be completely stopped,
stored, and regenerated. In this chapter, we review the concept of dark-state
polaritons, which provides an elegant way of understanding the stopping and
controlling of light pulses that have been demonstrated with slow light based on
electromagnetically induced transparency (EIT). We describe some of the first
experiments on stopped light and compare the phenomenon with photon echoes.
Finally, we briefly discuss the implications of stored and regenerated light for
quantum memories and conclude with a summary of some related work.

6.1 Controlling group velocity

From the basic definition vg = c/[n + ω dn/dω], it is obvious that group velocity
can be changed simply by changing the central frequency of a light pulse. The
theory of slow light in an EIT medium shows that the group velocity of a probe
pulse can be controlled by varying the intensity of the coupling field [cf equation
(5.38)]. In the case of slow light based on coherent population oscillations in
a solid, the group velocity can be similarly controlled by varying the intensity
of the driving field. It has also been predicted that the group velocity can be
varied from subluminal to superluminal by applying an additional coupling field
whose frequency is close to the non-allowed transition (1 ↔ 2) in the " transition
scheme for EIT in figure 5.2 [197]. With such an additional field, the solution for
the expectation value 〈σ̂13(t)〉 (section 5.2) to first order in the probe field but to all
orders in the other two fields is complicated but has been studied numerically. The
results show that a probe pulse can propagate with a subluminal group velocity
for small intensities of the additional field, a superluminal group velocity as
the intensity is raised, and again a subluminal velocity as the intensity of the
additional field is further increased. The additional field thus acts as a ‘knob’ for
controlling the group velocity of a probe pulse [197].

It was noted in section 5.5.3 that group velocities vg ∼ 100 m s−1 have
been observed in single pulses propagating in room-temperature ruby. The group
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velocity could be varied by changing the pulse duration. Talukder et al [198]
have demonstrated that the group velocity of femtosecond pulses propagating
in a dye could be varied from subluminal to superluminal by varying the dye
concentration. Kim et al [199] have reported experiments in which the group
velocity of pulses in cesium vapour changes from subluminal to superluminal as
the pulse power is increased.

Light pulses can be delayed simply by a Fabry–Perot elaton. Near a
transmission frequency determined by the imaginary part of the amplitude
transmission factor for the etalon, there is also a steep variation of the real
part, implying a strong reduction of the group velocity of a pulse in the case of
high-finesse etalons. Photonic bandgap structures, similarly, can have dispersion
curves such that the group velocity can be slowed substantially (‘heavy photons’)
near a band edge. (See, for instance, [200].)

It has been demonstrated experimentally that the group velocity can be
controlled to such an extent that a pulse of light can not only be slowed but
completely stopped and then regenerated. The stopping can be associated with
a temporary storage of light in collective metastable atomic states of the medium.
In fact, it is possible in this way to store and then retrieve, after a relatively long
period of time, the quantum state of the field [201–203]. A convenient and elegant
way to understand this is based on the concept of dark-state polaritons [201], to
which we now turn our attention.

6.2 Dark-state polaritons

Consider again the equations (5.15) and (5.16) that we used to describe EIT in the
! transition scheme of figure 5.2. Assume that the probe field is resonant with
the 1 ↔ 3 transition, so that " = 0 and

Ṡ12 = − γ12S12 + i
2

µ23 cS13 (6.1)

Ṡ13 = − γ13S13 + i
2

µ13 p + i
2

µ23 cS12. (6.2)

For times short compared with the (usually long) dephasing time γ −1
12 of the non-

allowed transition 1 ↔ 2, equation (6.1) implies

S13(t) ∼= − 2i
$c(t)

∂S12

∂ t
(6.3)

where the Rabi frequency $c = µ23 c/ associated with the coupling field is
now explicitly allowed to be time-dependent. From (6.2), we have

S12(t) = − µ13 p(t)
$c(t)

− 2i
$c(t)

[
∂S13

∂ t
+ γ13S13

]

∼= − µ13 p(t)
$c(t)

− 2i
$c(t)

[
∂

∂ t
+ γ13

](
− 2i

$c(t)
∂S12

∂ t

)
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∼= − µ13 p(t)
!c(t)

+ 4
!c(t)

[
∂

∂ t
+ γ13

]
1

!c(t)
∂

∂ t

(
µ13 p(t)

!c(t)

)

∼= − µ13 p(t)
!c(t)

. (6.4)

This approximation is discussed later.
The probe field Ep(z, t) in the plane-wave approximation propagates

according to the wave equation
(

∂2

∂z2 − 1
c2

∂2

∂ t2

)
Ep(z, t) = Nµ13

ε0c2

∂2

∂ t2 (σ13 + σ31) (6.5)

where N is the density of atoms. As in chapter 5, we write Ep(z, t) as a slowly
varying envelope p(z, t) multiplying a carrier wave of frequency ωp:

Ep(z, t) = 1
2 p(z, t)e−iωp(t−z/c) + c.c. (6.6)

and
σ13(z, t) = S13(z, t)e−iωp(t−z/c). (6.7)

Equation (6.5) yields

∂ p

∂ t
+ c

∂ p

∂z
∼= iNµ13ωp

ε0
S13 ∼= iNµ13ωp

ε0

[
− 2i

!c

∂S12

∂ t

]

∼= − g2

!c(t)
∂

∂ t

[
p(z, t)
!c(t)

]
(6.8)

where g2 = 2µ2
13ωp/V ε0 and = NV is the number of atoms in the volume

V . In deriving this expression, we have used the approximations (6.3) and (6.4).
If we take the coupling field intensity to be constant, (6.8) reduces to

∂ p

∂z
+ 1

vg

∂ p

∂z
= 0 (6.9)

where the group velocity

vg = ε0 c!2
c

2Nµ2
13ωp

(6.10)

in agreement with (5.33).
We have treated the probe and coupling fields classically. Since we have

treated the (weak) probe field only to first order, equation (6.8) is linear in the
probe field. If we continue to treat the (strong) coupling field as a prescribed
classical field, the linearity of our equations with respect to p implies that we
will formally obtain the same equation as (6.8) when we treat the probe field as a
quantum field. In other words, the Heisenberg operator equation of motion for the
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probe field, subject to the same approximations used to arrive at (6.8), is formally
identical to (6.8):

∂ ˆp
∂ t

+ c
∂ ˆp
∂z

∼= − g2

"c(t)
∂

∂ t

[ ˆp(z, t)
"c(t)

]

(6.11)

where ˆp is the Heisenberg-picture operator for the probe field. This is the
equation for ˆp obtained by Fleischhauer and Lukin [201]. Similarly, the
quantities σi j and Si j can be replaced by Heisenberg operators σ̂i j and Ŝi j ; and
recall that σi j and Si j have denoted the expectation values of the operators σ̂i j and
Ŝi j .

To solve equation (6.11), Fleischhauer and Lukin [201] define a new
quantum field $̂(z, t) that is a superposition of atom and (probe) field lowering
operators, as evidently first introduced for Raman transitions by Mazets and
Matisov [204]:

$̂(z, t) = cos θ(t)F̂p(z, t) − sin θ(t)
√

Ŝ12(z, t) (6.12)

where

cos θ(t) = "c(t)√
"2

c(t) + g2
(6.13)

sin θ(t) =
√

g
√

"2
c(t) + g2

(6.14)

and
F̂p(z, t) = µ13

g
ˆp(z, t) (6.15)

is a dimensionless electromagnetic field operator. Making again the
approximation

Ŝ12(t) ∼= −µ13 ˆp(t)
"c(t)

(6.16)

and using (6.11)–(6.14), one obtains, after straightforward algebra, the equation
of motion [201] [

∂

∂ t
+ c cos2 θ(t)

∂

∂z

]
$̂(z, t) = 0. (6.17)

Thus, the field $̂(z, t) propagates with the time-dependent group velocity

vg(t) = c cos2 θ(t) = c"2
c(t)

"2
c(t) + g2 (6.18)

and equation (6.17) has the shape-preserving solution

$̂(z, t) = $̂

(
z − c

∫ t

0
dτ cos2 θ(τ ), t = 0

)
. (6.19)
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If !̂(z, t) is written as the plane-wave expansion

!̂(z, t) =
∑

k

!̂k(t)eikz (6.20)

one obtains, from (6.12), the commutation relation

[!̂k, !̂
†
k′ ] ∼= δkk′ [cos2 θ + sin2 θ ] = δkk′ . (6.21)

In obtaining this result, the equal-time commutation relation [Ŝ12, Ŝ21] = σ̂11 −
σ̂22 is used, together with the approximation that the atoms remain in state 1
with high probability, so that we may replace σ̂11 by 1 and σ̂22 by 0. The result
(6.21) states that the field !̂ is bosonic: the quasi-particles associated with !̂ are
excitations of the combined atom–field system, i.e. they are polaritons.

Polaritons are quasi-particles belonging to mixed states of field and material
excitations, e.g. mixed states of photons and electronic excitations (excitons)
or mixed states of photons and phonons. The polaritons of the field !̂(z, t)
involve the atomic operator σ̂12 associated with the non-allowed transition
1 ↔ 2, whereas the better known polaritons, if described similarly, would
involve corresponding operators associated with allowed transitions. To see why
the quasi-particles belonging to the field !̂ are called dark-state polaritons by
Fleischhauer and Lukin, consider !̂ defined for a single atom as

!̂ = cos θ F̂p − sin θ Ŝ12 (6.22)

and assume also a single probe field mode, for which the slowly varying operator
ˆp is given by

ˆp =
(

2 ωp

ε0V

)1/2

âpeiωpt = g
µ13

âpeiωpt (6.23)

where âp is the photon annihilation operator for the mode ([âp, â†
p] = 1). Then

F̂p = âpeiωpt ≡ Âp (6.24)

and
!̂ = cos θ Âp − sin θ Ŝ12. (6.25)

The excited states (quasi-particles) of !̂ are generated by applying the operator
!̂† to the ground state |0〉|1〉, where |0〉 is the vacuum state of the field and |1〉 is
the ground state of the unperturbed atom (figure 5.2). Thus, for instance, the first
excited state is

!̂†|0〉|1〉 = [cos θ Â†
p − sin θ Ŝ21]|0〉|1〉

= cos θ |1p〉|1〉 − sin θ |0〉|2〉

= 'c|1p〉|1〉 − g|0〉|2〉
√

'2
c + g2

(6.26)
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where |1p〉 is the one-photon state of the probe field.
The interaction Hamiltonian in this single-mode single-atom model is

Ĥint = − !c(Ŝ23 + Ŝ32) − g( Â†
p Ŝ13 + Ŝ31 Âp). (6.27)

It follows that

Ĥint"̂
†|0〉|1〉 = − g!c|0〉|3〉 + !cg|0〉|3〉

√
!2

c + g2
= 0. (6.28)

In other words, the state "̂†|0〉|1〉 is a dark state. In fact, if we take g = !c as in
our simple model of section 5.2 [cf equation (5.1)], we see that "̂†|0〉|1〉 is just
the non-coupled state |NC〉. More generally, the excited states of "̂ are generated
by applying "̂n to the ground state |0〉|1〉 and these states, likewise, satisfy

Ĥint("̂
†)n |0〉|1〉 = 0 (6.29)

i.e. they are dark states.
In the -atom case, the excited states generated by applying "̂

†
k to the

ground state |1112 . . . 1N 〉, where 1 j denotes the state 1 of atom j , is the
symmetric state

1√
N

∑

j=1

|1112 . . . 2 j . . . 1 〉 (6.30)

and, likewise, the state ("̂
†
k )n |1112 . . . 1 〉 is a symmetric state with n atoms in

state |2〉. As in the single-atom model, these states are (orthogonal) eigenstates
with eigenvalue 0 of the interaction Hamiltonian, i.e. they are dark states that do
not interact with light.

Thus, the polaritons of the coupled atom–field system in EIT are called
dark-state polaritons [201]. Equation (6.18) shows that the group velocity of the
polariton field can be controlled by varying the strength of the coupling field. If
θ is adiabatically varied from 0 (!2

c $ g2) to π/2, for instance, the group
velocity changes from c to 0, i.e. the probe pulse is stopped. According to (6.12),
when this happens, the polariton excitations are entirely atomic:

"̂(z, t) = −
√

Ŝ12(z, t) (6.31)

and a state with photons in the field and all the atoms in state 1 is changed to a
state with no photons and atoms in state 2. But more interesting is the fact that the
pulse shape and quantum state of the probe pulse are stored in a collective atomic
state of the medium and can be recovered by changing the polariton mixing angle
θ from π/2 to 0. Because the reduction of the group velocity to zero is basically
linear in the probe field, the quantum state of the probe is preserved and stored
in the atomic medium. This information is ‘imprinted’ in the atoms and retrieved
when the mixing angle is brought back to its original value.
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It should be noted that the shape-preserving solution (6.19) is not a soliton,
since it does not require any special pulse shape dictated by a nonlinear coupling
of the field to the medium.

Note also that, in the excitation transfer from the probe field to the atoms,
the probe field energy is not all transferred to the atoms. Conservation of energy
requires that some—in fact, most—of the probe field energy is transferred to the
coupling field as the atoms undergo the Raman transition 1 → 2.

Let us now examine the approximation (6.4) that leads to (6.17). It is clear,
first of all, that this approximation requires that the Rabi frequency !c(t) not
vary too rapidly. Non-adiabatic corrections to the equation of motion (6.17) are
obtained using the approximation contained in the penultimate line. Retaining
only the leading terms, one obtains [171]

[
∂

∂ t
+ c cos2 θ

∂

∂z

]
$̂ ∼ −γ13

(
dθ

dt

)2 sin2 θ

g2 $̂ + c2γ13
cos2 θ sin4 θ

g2

∂2

∂z2 $̂

(6.32)
for times t $ γ −1

13 . For the first term on the right-hand side to be negligible, its
integral over time should be small:

γ13

∫ ∞

0
dt

(
dθ

dt

)2 sin2 θ

g2 = γ13

∫ ∞

0
dt

(dθ/dt)2

!2
c(t) + g2 & 1 (6.33)

whereas for the second term to be negligible, we should have (for sin θ ∼= 1)

c2γ13

g2

1
L2

p
& c

L
(6.34)

or (
Lp

L

)
g2

γ13
τp $ 1 (6.35)

where Lp = cτp is the pulse length. In terms of the absorption coefficient a0 in
the absence of EIT [cf equation (5.31)], we can write this condition equivalently
as

L & Lp
√

a0L. (6.36)

We can write this condition in yet another, instructive way using the fact
that the pulse is compressed in EIT by the factor c/vg (section 5.3): Lp =
(vg/c)cτp = vg/'ωpulse(0), where 'ωpulse(0) is the initial spectral width of
the pulse. Then (6.36) becomes L & vg

√
a0L/'ωpulse(0). But, from (5.31),

'ωtr(0) = vg
√

a0L/L for the initial spectral width of the EIT transparency
window. Thus [171],

'ωpulse(0) & 'ωtr(0). (6.37)

That is, the spectrum of the initial probe pulse must be narrower than the EIT
transparency window: the pulse duration cannot be too short. Note that this
condition is most easily satisfied for an optically dense medium (a0L $ 1).
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The condition (6.33) obviously requires that the coupling field not be
changed too rapidly. Using (6.13), (6.14), and (6.18), and again the approximation
sin θ ∼= 11, we can write this condition as [171]

T " "abs

c

v0
g

c
(6.38)

where the time

T = #2
c∫ ∞

0 dt #̇2
c(t)

(6.39)

is a measure of the time scale over which #2
c(t) varies, v0

g = #2
c/ g2 is the

initial group velocity, before the coupling field is varied, and "abs = 1/a0 is the
ordinary (non-EIT) absorption length. The adiabaticity condition (6.38) is easily
met experimentally.

Numerical solutions of the Maxwell–Bloch equations [171, 205] support
these rough estimates for adiabaticity. In fact, they indicate that the probe pulse
can be nearly perfectly regenerated even when T → 0 and the atomic dipole
coherence does not adiabatically follow the coupling field. This is consistent with
the observations of Liu et al [206] described in the following section.

In addition to the conditions (6.33) and (6.35) for adiabaticity, we have
assumed [recall (6.3)] that the dephasing rate γ12 of the non-allowed transition
1 ↔ 2 is negligible. This rate limits the time over which a light pulse can be
stored in the medium before it can be faithfully restored. In fact, γ12 can be made
quite small (γ −1

12 on the order of seconds) by using buffer gases and wall coatings
to minimize the effects of collisions on the 1 ↔ 2 coherence. If there are e
atoms in state |2〉 during the storage of the pulse, the maximum storage time is on
the order of ( eγ12)

−1.
Note that it has been assumed that the coupling field is a function of time

but not distance z. This is a valid assumption if the coupling field propagates
at right angles to the propagation direction of the probe field and a reasonable
approximation if the group velocity of a coupling field co-propagating with the
probe is much larger than the probe group velocity. More generally, assuming
that the coupling field propagates as in free space [#c(z, t) = #c(t − z/c)], one
obtains [201]

[
∂

∂ t
+ c cos2 θ(z, t)

∂

∂z

] ˆp
#c

= 0. (6.40)

In this case, the pulse shape is not preserved exactly, since the group velocity now
depends on z.

1 The approximation sin θ ∼= 1, or g2/#2
c = 2Nωpµ2

13/ cε0#2
c " 1, has already been used in

our discussion of EIT [cf equation (5.33)]. It is roughly equivalent to the condition that the atomic
density be much larger than the photon density.

Copyright © 2005 IOP Publishing Ltd.



172 Stopped, stored, and regenerated light

6.3 Stopped and regenerated light

The first, beautiful experimental demonstration of the stopping and storage of
light based on the preceding ideas was reported by Liu et al [206]. As in the first
demonstration of ultraslow light [179], the propagation medium was an ultracold
gas of sodium atoms. The peak density of the cloud of 1.1 × 107 sodium atoms
was 1.1 × 1013 cm−3 and the temperature (0.9 µK) was slightly higher than the
critical temperature for Bose–Einstein condensation. The cloud was 339 µm in
length and 55 µm in width along the transverse direction. The three-level EIT
transition scheme in these experiments was realized using hyperfine states of the
sodium D1 line at 589.6 nm (figure 6.1) and the coupling and probe fields in
this case were co-propagating. The atoms were magnetically trapped in the state
|1〉 = |3S, F = 1, MF = −1〉.

The coupling field was turned on a few ms before the probe pulse and the two
fields had orthogonal linear polarizations before passing through a quarter-wave
plate (figure 6.1) that resulted in two fields with orthogonal circular polarizations
incident on the sodium cloud. After passage through the cloud, the fields
passed through a second quarter-wave plate that restored their original linear
polarizations, after which they were separated by a polarizing beam splitter.
The fields that passed through the central portion of the cloud were incident on
photomultiplier tubes (PMT) and their intensities were simultaneously recorded.

Figure 6.2(a) shows a reference pulse (open circles) and a Gaussian fit
(dotted curve) obtained by averaging 100 probe pulses in the absence of the
atomic cloud, together with the coupling field (broken curve) and the (normalized)
probe pulse (filled circles) transmitted by the cloud. At 6.3 µs, indicated by the
arrow, the probe pulse is spatially compressed and confined to the 339 µm length
of the cloud. The delay of the probe pulse relative to the reference pulse is 11.8 µs,
corresponding to a group velocity vg = (339 µm)/(11.8 µs) = 29 m s−1. The
spatial compression factor c/vg = 107 (section 5.3) and the free-space probe
pulse length of 3.4 km (τp = 11.3 µs) implies that the spatial extent of the pulse
in the cloud is (3.4 km)/(107) = 340 µm, i.e. the pulse is spatially compressed to
the cloud size.

Figure 6.2(b) shows the regeneration of the probe pulse after the coupling
laser is turned off at 6.3 µs and then turned back on at 44.3 µs. The revived
probe pulse has nearly the same shape as the original. Figure 6.2(c) shows the
regeneration of the probe pulse when the coupling laser is turned back on after
a much longer time (839.3 µs), and figure 6.2(d) is a plot of the probe pulse
transmission versus the storage time. The fit to the data shown by the straight line
implies that the dephasing time of the non-allowed transition (1 ↔ 2) is about
0.9 ms. This is comparable to the inverse of the elastic collision rate for the cold
sodium atoms [206].

Experiment thus supports the predictions of the theory described in the
preceding section: the probe pulse can be stopped and regenerated depending
on whether the coupling field is off or on. Optical information can be coherently
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Figure 6.1. (a) Transitions between hyperfine states of the sodium D1 line in the
experiments of Liu et al and (b) experimental set-up for the observation of stored and
regenerated light (see text). From [206], with permission.

stored in the atoms and then ‘read out’ by changing the coupling field. Memory
of the wavevector, polarization, and shape of the probe pulse is preserved in the
relative phases between different atoms in the medium over times shorter than
the dephasing time γ −1

12 . Figures 6.2(c) and 6.2(d) show that, for storage times
approaching γ −1

12 , the regenerated pulse is no longer a faithful reproduction of the
original pulse and the probe transmission decreases.

The amplitude of the regenerated probe pulse increased when the coupling
field was turned on with an intensity larger than that of the original coupling
field, again consistent with theory. Experiments in which two or three short
coupling pulses were turned on sequentially demonstrated multiple read-outs of
the information stored in the atoms [206].

The ultracold atoms and the co-propagating coupling and probe fields in
these experiments greatly reduce the effects of atomic motion and Doppler
broadening. However, as in the realization of ultraslow group velocities, the
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Figure 6.2. Experimental data of Liu et al on the storing and regeneration of a probe pulse
(see text). From [206], with permission.
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stopping, storing, and regeneration of light can also be achieved in hot vapours.
Phillips et al [207] have demonstrated light storage in a 4-cm-long cell containing
87Rb vapour at temperatures ∼ 70–90 ◦C and densities ∼ 1011–1012 cm−3. The
three levels in their EIT ! transition scheme are

|1〉 = |5S1/2, F = 2, MF = 2〉
|2〉 = |5S1/2, F = 2, MF = 0〉
|3〉 = |5P1/2, F = 1, MF = 1〉. (6.41)

The co-propagating probe and coupling fields had opposite circular polarizations.
The probe was spatially compressed from its free-space length (∼ 10–30 µs ×
3 × 108 m s−1) in the cell by more than five orders of magnitude as a result of the
slow group velocity (vg ∼ 1 km s−1, c/vg ∼ 3 ×105). While the probe pulse was
in the cell, the coupling field was turned off over a time interval of about 3 µs and
turning it back on resulted in the regeneration of the probe pulse. Storage times
roughly comparable to those demonstrated by Liu et al were realized.

Finally, we note that the stopping and storing of light was also observed in a
cold solid in the experiments of Turukhin et al [184] mentioned in section 5.5.

6.4 Echoes

The stopping and regeneration of the probe field as the mixing angle is varied from
0 to π/2 to 0 results ideally in an exact replica or ‘echo’ of the probe field. The
question is frequently raised as to whether this regeneration is related to photon
echoes [208], the analog of the spin echoes known since 1950 in nuclear magnetic
resonance [209].

Photon echoes can occur in an inhomogeneously broadened collection of
two-level atoms, i.e. a collection of atoms in which different atoms have slightly
different transition frequencies. A short, intense laser pulse that brings the
atoms midway between their lower and upper states—a π/2 pulse—produces a
macroscopic polarization that results in the emission of a pulse whose duration
is on the order of the inverse of the inhomogeneous linewidth. Physically, this
time duration is the time it takes for the macroscopic polarization to be washed
out as the individual atomic dipole moments oscillate at their different transition
frequencies. The application later of a π pulse causes the individual dipoles to
begin rephasing, resulting again in a macroscopic polarization and, thence, the
photon echo2.

Among the echo phenomena possible in gases is the Raman echo [211], in
which two fields interact with a three-level atom as in figure 5.2. In this case, two
bichromatic pulses with central frequencies ωp and ωc are applied at times t = 0
and t = τ , and the application of a third pulse of frequency ωc at time 2τ results

2 This terse description of photon echoes is only meant to serve as a reminder for the reader who has
previously encountered the concept. For a proper discussion, see, for example, Allen and Eberly [210].
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in the Raman echo of frequency ωp at time 2τ . In the case of the Raman echo,
both fields can be far off resonance from their respective transitions.

The stopping and regeneration of light based on EIT and a temporally
varying coupling field is quite different from these echo phenomena, which
result from a rephasing of induced dipole moments as in the case of a Doppler-
broadened transition in a gas. For photon echoes, the gas should be optically thin
and the ‘storage’ time is relatively short compared with the rather long storage
times observed in the experiments described in section 6.3 and, for both photon
and Raman echoes, only a small fraction of the incident light is stored. Moreover,
they involve inherently dissipative processes and are, therefore, unlikely to be
implementable, for instance, for quantum memories. Finally, the formation of the
echoes does not involve ultraslow group velocities.

6.5 Memories

A frequently mentioned potential application3 of stored and regenerated light
is in ‘quantum information’ processing (QIP) and, in particular, for ‘quantum
memories’ for photons.

QIP is extremely challenging for several reasons, not the least of which
is the realization of quantum memories that can store information with little
‘decoherence’ and that can be accessed on short time scales. As is well
recognized, quantum optical systems are attractive for this purpose because
atom–field interactions can be made controllable and reversible and decoherence
processes can be alleviated using long-lived hyperfine states, as in EIT (e.g. state
2 in figure 5.2).

Considerable progress in this direction has been made in the area of cavity
quantum electrodynamics (cavity QED) [212]. Consider again the three-level
# system shown in figure 5.2 and assume such an atom is in a cavity such
that the 1 ↔ 3 transition is resonant with a single quantized field mode while
the 2 ↔ 3 transition is resonant with a classically prescribed field with Rabi
frequency $c(t). The interaction Hamiltonian is

Ĥint = − g(âσ̂31 + â†σ̂13) − $c(t)(σ̂23 + σ̂32) (6.42)

and the system has dark states

|ψn〉 = cos θ(t)|1〉|n + 1〉 − sin θ(t)|2〉|n〉 (6.43)

such that
Ĥint|ψn〉 = 0. (6.44)

Here |n〉 is the probe field state with n photons and

tan θ(t) = g
√

n + 1
$c(t)

. (6.45)

3 See, for instance, [201] and [206] and references therein.
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Thus, by adiabatically changing the coupling field Rabi frequency !c(t), we can
(reversibly) switch between the states |1〉|n + 1〉 and |2〉|n〉, i.e. between atom
and probe field excitations. Such stimulated Raman adiabatic passage (STIRAP)
[213] is the basis for some proposals for QIP [214].

The adiabaticity condition for STIRAP is that the time T characterizing the
state transfer should satisy

g2nT " γ (6.46)

where γ is the rate of spontaneous emission out of level 3. Obviously T should
not be larger than the decoherence time 1/nκ , where κ is the cavity photon loss
rate. Thus, (6.46) implies the condition

g2 " κγ (6.47)

for adiabaticity. This condition defines the so-called strong coupling regime of
cavity QED and it is difficult to satisfy in practice. The cavity QED approach to
QIP also suffers from the related sensitivity of the coupling to the position of the
atom in the cavity.

As noted by Fleischhauer and Lukin [201], the storing and regeneration
of light offers certain advantages over cavity QED for QIP. For one thing, the
adiabaticity condition (6.35) for coherent excitation transfer between the atoms
and the field is more easily satisfied than the cavity QED adiabaticity condition
(6.47) because it involves the number of atoms, . This is a reflection of the fact
that the storing and regeneration is a collective atomic coherence phenomenon.

Consider first EIT with a constant coupling field as a technique for storing
information. The pulse delay time τd = L/vg, which we can regard as the storage
time, is related to the width of the EIT transparency window by [equation (5.31)]
τd = √

a0 L/%ωtr. Thus, the figure of merit τd/τp for storage is limited by the
opacity of the medium4:

τd

τp
= %ωp

%ωtr

√
a0L ≤

√
a0L. (6.48)

An increase in τd requires a decrease in the group velocity but, as discussed in
section 5.2, this implies that the EIT transparency window gets narrower and that
there is a consequent increase in the probe absorption.

In the case of stopped light resulting from a temporally varying coupling
field, however, the narrowing of the transparency window is accompanied by a
simultaneous narrowing of the probe pulse spectral width. As the group velocity
is adiabatically slowed, the spatial profile and length of the pulse are unaffected
[equation (6.19)] while the electric field is reduced in amplitude and broadened
in time. There is, therefore, narrowing of the pulse spectrum that goes along with
the narrowing of the transparency window and, provided the initial pulse spectral

4 Of course the condition τd < γ −1
12 must also be satisfied.
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width satisfies (6.37), the pulse spectrum remains within the transparency window
as the group velocity is adiabatically decreased [171].

For light stopping and storage to be useful as a quantum memory technique,
it must also store and regenerate quantum information with high fidelity, i.e.
it must be robust against decoherence effects even though it involves a many-
particle entangled state. While further work in this direction is warranted, the fact
that dark-state polaritons do not undergo spontaneous emission means that they
are immune to at least one major source of decoherence.

6.6 Some related work

We have considered only situations where spatial dispersion can be ignored, i.e.
where there is no dependence of the refractive index n on the wavevector k. If we
assume that n = n(ω, k), k = nω/c, then the definition vg = dω/dk implies that

vg = c − ω dn/dk
n + ω dn/dω

. (6.49)

This suggests that the group velocity can be made very small (or negative) not only
by making the denominator large (or negative), as considered thus far, but also by
making the numerator small (or negative) [215]. A simple example where spatial
dispersion occurs is when we have an atomic medium moving with a velocity v.
Then each atom sees a Doppler shift −kv in a co-propagating field of frequency
ω and, consequently, the refractive index of the moving medium depends on k as
well as ω. Using k ∼= k̃ and ω ∼= ω̃ − k̃v, where the tilde labels quantities in the
frame moving with the atoms, we obtain

vg = dω

dk
= dω̃

dk̃
− v = ṽg − v (6.50)

where ṽg is the group velocity in the frame moving with the atoms. In effect,
there is a light ‘dragging’ reminiscent of the Fresnel drag (section 1.6). If the
atoms are moving with the velocity v = ṽg, then vg = 0 and the light may be said
to be ‘frozen’ in the laboratory frame. There do not appear to be any experimental
demonstrations of frozen light or negative group velocities in moving media. An
excellent review of light propagation in moving media is given by Leonhardt and
Piwnicki [216].

In chapter 5, we mentioned self-induced transparency (SIT) as one of the
effects in which small group velocities (∼ 102 − 104 m s−1) are observed.
Bullough and Gibbs [217] have discussed at some length the differences and
similarities between SIT and the information storage and retrieval considered
in this chapter. They emphasize the fact that the theory of SIT is intrinsically
nonlinear, while that of EIT and the stopping and regeneration of light is
essentially a linear refractive index theory and that, in quantum-mechanical terms,
both theories are formulated at the level of expectation values.
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A noteworthy point made by these authors is that the stopping of a light pulse
and the recovery of its phase information was already predicted and observed
many years ago in the context of non-degenerate SIT. In the case of the sodium
D1 F = 2 ↔ 2 transitions, for example, there are two relevant transition
dipole moments of magnitude p and 1

2 p; thus, a 4π pulse for p is a 2π pulse
for 1

2 p. The initial absorption ∝ p2 and ∝ 1
4 p2 is, of course, dominated

by the larger dipole moment. An initial 4π pulse will break up into two 2π
pulses as in non-degenerate SIT, with the more intense pulse travelling faster.
This leading pulse, being a π pulse for the 1

2 p dipole moment, is then strongly
attenuated and stopped—while retaining its phase information—and the second
pulse propagating in the medium excited by the first pulse grows in amplitude
and speed and overtakes the first pulse at its stopping point. Then this pulse
is attenuated and stopped and overtaken by the first pulse that is amplified and
advanced by the excited medium ahead of it. In other words, there is a pulse ‘leap-
frogging’ that was observed in the experiments [218]. If damping is negligible,
the leap-frogging should proceed indefinitely.
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Chapter 7

Left-handed light: basic theory

We have mainly been concerned thus far with ‘abnormal’ group velocities
associated with strong variations of the refractive index with frequency. Now
we turn our attention to abnormal values of the refractive index itself, specifically
to the possibility that the refractive index can be negative. Although there are no
known naturally occurring materials with a negative refractive index, there is no
fundamental reason why the refractive index cannot be negative and, as we shall
see in the following chapter, it is possible to fabricate structures that do, in fact,
exhibit negative refraction.

In this chapter, we discuss some of the basic theory of negative refraction
and its consequences. A negative refractive index is shown to be implied by
simultaneously negative values of the permittivity ε and the permeability µ. In
order to avoid certain inconsistencies, dispersion of negative-index materials must
be taken into account. We quantize the field in a negative-index medium and show
that the Doppler and Cerenkov effects are reversed in such a medium. After a
discussion of the Fresnel formulas in the case that one of the media at a dielectric
interface has a negative refractive index, we turn our attention to evanescent
waves and the possibility that they can be amplified in a negative-index slab.
Implications of negative refractive index for surface modes at a dielectric interface
are discussed. We consider the ‘perfect lens,’ an aberration- and reflection-free
planar lens capable of subwavelength resolution, and show that absorption must
be kept very small if such a lens is to be realized.

7.1 Introduction

In section 1.2, we reviewed the derivation of expressions such as (1.25) for the
refractive index, taking the magnetic permeability µ to have the value µ0 =
4π × 10−7 N A−2 as in free space. If the field frequency ω is sufficiently large
compared with atomic transitions of significant oscillator strength [cf equation
(1.27)], the permittivity ε(ω) can be negative and the refractive index purely
imaginary: n = inI, nI > 0 for a passive material. In this case, exp[ikz] =
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exp[in(ω)ωz/c] = exp[−nIωz/c]. This occurs, for instance, in the case of free
electrons (ω j i = 0) when the field frequency is smaller than the plasma frequency
ωp: ε(ω) = ε0(1 − ω2

p/ω
2) < 0.

Equation (1.33) shows that the real part of the permittivity ε can change
sign and become negative (and large) as the field frequency is swept across
a resonance. Similarly, the permeability µ can be negative near a resonance
in ferromagnetic materials. The difficulty in realizing simultaneously negative
values of ε and µ lies in the fact that the resonance frequencies for which ε < 0
tend to be much larger than the resonance frequencies for which µ < 0—high
frequencies (typically optical or infrared) in the former case and much lower
frequencies in the latter. Moreover, the resonance regions tend to be very narrow
in either case.

For atomic media the magnetic susceptibility χm (= µ/µ0 − 1) is of order
v2/c2 at optical frequencies, where v is the electron velocity [219]. Thus

. . . there is certainly no meaning in using the magnetic susceptibility
from optical frequencies onward, and in discussing such phenomena we
must put µ = [µ0]. To distinguish between B and H in this frequency
range would be an over-refinement. Actually, the same is true for many
phenomena even at frequencies well below the optical range.

Note that if either ε or µ is negative and the other positive, then the refractive
index is purely imaginary and there is no propagating wave. This occurs, for
instance, when a wave with frequency below the plasma frequency is incident on
a plasma. The incident wave is reflected.

In this chapter, we take for granted that ε and µ can be simultaneously
negative and explore some consequences of this double negativity. As mentioned
in section 1.8, materials with this property are referred to as doubly negative, left-
handed, or simply as metamaterials, the last term connoting the fact that the only
materials known to have both ε < 0 and µ < 0 are purposefully fabricated rather
than naturally occurring.

Veselago [28,29] was evidently the first to consider seriously the possibility,
and some consequences, of having a negative refractive index. In particular,
he showed that a negative electric permittivity ε and a negative magnetic
permeability µ, imply a negative refractive index and a phase velocity in a
direction opposite to the direction of the group velocity and energy flow. As also
noted in section 1.8, the possibility that the refractive index (or phase velocity)
could be negative was briefly raised by Mandelstam in connection with Snell’s
law in 1944 [30, 31]. Lamb [220], in an article ‘On group-velocity’ in 1904,
considered the possibility that waves on strings could have a phase velocity in
the direction opposite to that of the group velocity and Schuster [221], in the
same year, noted that the phase and group velocities of an electromagnetic wave
could have opposite signs in a region of anomalous dispersion1. Experimental
1 I learned of these and other early contributions from a website of Alexander Moroz (www.wave-
scattering.com/negative) that was brought to my attention by Gary D Doolen.
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confirmations of negative group velocity were described in chapter 2.

7.2 Negative ε and µ imply negative index

At first thought, it would seem that having ε < 0 and µ < 0 should not affect the
refractive index n = √

εµ/ε0µ0. However, ε, µ, and n are complex, and we can
write

ε/ε0 = rεeiθ µ/µ0 = rµeiφ (7.1)

and
n =

√
εµ/ε0µ0 = √

rεrµei(θ+φ)/2. (7.2)

The requirement that the imaginary part of n be positive for a passive (non-
absorbing) medium implies that

0 ≤ 1
2 (θ + φ) < π. (7.3)

If the real parts of ε and µ are both negative, i.e. cos θ < 0 and cos φ < 0, then

π

2
<

1
2
(θ + φ) <

3π

2
. (7.4)

To satisfy both (7.3) and (7.4), we must have

π

2
<

1
2
(θ + φ) < π (7.5)

and, therefore, a negative (real) refractive index2:

nR ≡ Re[n] = √
rεrµ cos 1

2 (θ + φ) < 0. (7.6)

Thus, the requirement that n has a positive imaginary part leads to the
conclusion that, if ε and µ have negative real parts, the real part of n must also
be negative. In a fundamental sense, this conclusion may be said to follow from
causality, which, as discussed in section 1.3, demands that ε(ω) and n(ω) (and
similarly µ(ω)) be complex.

An immediate consequence of a negative refractive index3 can be seen from
Snell’s law4. Consider a plane wave incident from a medium with n > 0 onto a
medium with n < 0. In particular, consider a wave incident from vacuum onto

2 The choice of a negative refractive index when ε and µ are both negative is discussed in more detail
and justified by Ziolkowksi and Heyman [222].
3 The ‘refractive index’ will, henceforth, mean the real part of the complex refractive index. This
quantity, which determines the phase delay (or advance) of a propagating electromagnetic wave, will
be denoted by n.
4 Snell’s law is easily shown to be applicable regardless of the signs of the refractive indices. See
section 7.7.
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(a)

(b)

Figure 7.1. Rays and wavevectors when light is incident from vacuum onto a medium
with a refractive index (a) n > 0 and (b) n < 0. In the latter case, the direction of the
wavevector and, therefore, the phase velocity is opposite to the direction of energy flow.

a negative-index medium (NIM). If θ1 and θ2 are the angles of incidence and
transmission, respectively, then according to Snell’s law

sin θ1 = n sin θ2 (7.7)

n < 0 implies that sin θ2 < 0: the transmitted rays make a negative angle with
respect to the normal to the interface. In other words, the refracted rays are bent to
the same side of the normal as the incident rays—the ‘wrong’ way compared with
the usual case of positive-index media. This is shown in figure 7.1. Experimental
evidence for this aspect of NIMs is discussed in the following chapter.

Consider now the closely related example of a plane wave propagating in an
NIM. Write

E = E0ei(k·r−ωt) (7.8)

and, likewise, for D, B and H . From the Maxwell curl equations

∇ × E = − ∂ B
∂ t

(7.9)
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∇ × H = ∂ D
∂ t

(7.10)

and the constitutive relations D = ε(ω)E and B = µ(ω)H for an isotropic
medium, we obtain

k × E0 = ωµ(ω)H0 (7.11)

and
k × H0 = −ωε(ω)E0. (7.12)

Thus, if ε(ω) > 0 and µ(ω) > 0, the vectors E, H , and k form a right-handed
triad and the Poynting vector S = E× H points in the direction of the wavevector
k. But if ε(ω) < 0 and µ(ω) < 0, the vectors E, H , and k form a left-handed
triad and the Poynting vector points in a direction opposite to the direction of the
wavevector k. For this reason, electromagnetic waves in an NIM may be called
left-handed.

7.3 Dispersion

Veselago [29] noted that ‘when there is no frequency dispersion nor absorption
we cannot have ε < 0 and µ < 0, since in this case the total energy would be
negative’, i.e. the field energy density

uω = 1
4 [ε|Eω|2 + µ|Hω|2] < 0 (7.13)

where ε and µ are real under the assumption that there is no absorption. Taking
dispersion into account, we have [equation (2.60)]

uω = 1
4

[
d

dω
(εω)|Eω|2 + d

dω
(µω)|Hω|2

]
(7.14)

away from any absorption resonances. This is positive because

∂(εω)

∂ω
> 0 and

∂(µω)

∂ω
> 0. (7.15)

These conditions are another consequence of causality and may be derived as
follows. From the dispersion relation between the real and imaginary parts of
ε(ω) [equation (1.48) with g = ε − 1], namely

εR(ω) − 1 = 2
π

P
∫ ∞

0

ω′εI(ω
′)

ω′2 − ω2 dω′ (7.16)

it follows that

2ω[εR(ω) − 1] + ω2 dεR

dω
= 4ω

π
P

∫ ∞

0

ω′3εI(ω
′)

(ω′2 − ω2)2 . (7.17)
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For a passive medium, εI(ω
′) ≥ 0 at all frequencies and the integral is positive.

Thus [223],

ω
dεR

dω
> 2(1 − εR) (7.18)

and, therefore,
d

dω
(εRω) > 2 − εR (7.19)

and d(εRω)/dω > 0 for εR < 0. The second inequality in (7.15) is derived in
the same way. Thus, (7.15) is satisfied for frequencies at which absorption is
negligible.

It can also be shown that—away from any absorption resonances—the
group index ng = n + ω dn/dω is positive in an NIM. To see this, write
n = −√|ε||µ|/√ε0µ0, where ε = εR and µ = µR, so that

ng
√

ε0µ0 = −
√

|ε||µ| − ω

2

√
|ε|
|µ|

d|µ|
dω

− ω

2

√
|µ|
|ε|

d|ε|
dω

= − 1
2

√
|ε|
|µ|

(
|µ| + ω

d|µ|
dω

)
− 1

2

√
|µ|
|ε|

(
|ε| + ω

d|ε|
dω

)

= 1
2

√
|ε|
|µ|

d
dω

(µω) + 1
2

√
|µ|
|ε|

d
dω

(εω) > 0. (7.20)

This result will be used in the following section.

7.4 Maxwell’s equations and quantized field

Let us consider now the electric and magnetic fields in spectral regions removed
from any absorption resonance in an NIM. For a monochromatic electric field, we
write

E(r, t) = Cα(t)F(r) (7.21)

where α(t) = α(0) exp(−iωt), F(r) is a mode function, and C is a constant.
Maxwell’s equations

∇ · D = 0 (7.22)

∇ · E = 0 (7.23)

∇ × E = − ∂ B
∂ t

(7.24)

∇ × H = ∂ D
∂ t

(7.25)

for a medium without free charges and currents, together with the constitutive
relations, imply from (7.21) that

D(r, t) = εCα(t)F(r) (7.26)
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B(r, t) = − i
ω

Cα(t)∇ × F(r) (7.27)

H(r, t) = − i
µω

Cα(t)∇ × F(r). (7.28)

It then follows from (7.14) that the field energy associated with frequency ω is

Uω =
∫

d3r uω

= 1
4
|C|2|α(t)|2

[
d

dω
(εω)

∫
d3r |F|2 + 1

µ2ω2
d

dω
(µω)

∫
d3r |∇ × F|2

]
.

(7.29)

We assume that the mode function F(r) is normalized,
∫

d3r |F(r)|2 = 1. The
fact that F must satisfy the Helmholtz equation

∇2 F + k2 F = 0 (k2 = εµω2 = n2ω2/c2) (7.30)

as required by (7.22)–(7.25), together with standard identities of vector calculus5,
implies that

∫
d3r |∇ × F|2 = k2

∫
d3r |F|2 = k2 = n2ω2/c2 (7.31)

and, therefore,

Uω = |C|2
4µ

|α(t)|2
[
µ

d
dω

(εω) + ε
d

dω
(µω)

]
= n|C|2

2µc2 |α(t)|2 d
dω

(nω) (7.32)

where the last equality follows from the definition n2 = εµc2.
The constant C up to this point is arbitrary. Let us now set

C = (µc2/nng)
1/2 (7.33)

where again we introduce the group index

ng = d(nω)/dω. (7.34)

Then,
Uω = 1

2 |α(t)|2. (7.35)

Let us furthermore write

α(t) = α(0) exp(−iωt) = p(t) − iωq(t) (7.36)

5 See, for instance, [8, appendix C].
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which implies that

q̇ = p (7.37)

ṗ = − ω2q. (7.38)

Thus, we have the Hamilton equations of motion for a simple harmonic oscillator.
To quantize the field mode of frequency ω, we quantize this harmonic oscillator,
replacing q and p by operators q̂ and p̂ satisfying

[q̂, p̂] = i . (7.39)

The photon annihilation and creation operators are then â = (1/
√

2 ω)( p̂ − iωq̂)
and â† = (1/

√
2 ω)( p̂ + iωq̂), with

[â, â†] = 1. (7.40)

The electric field

E(r, t) = 1
2 [Cα(t)F(r) + C∗α∗(t)F(r)∗] (7.41)

is similarly replaced by the operator

Ê(r, t) =
(

µc2 ω

2nng

)1/2

[â(t)F(r) + â†(t)F(r)∗] (7.42)

when we quantize. For plane-wave modes, we can take

F(r) = (i/
√

V )ek exp(ik · r) (7.43)

where ek is a unit polarization vector (k · ek = 0) and V is a quantization volume:

Ê(r, t) = i

(
µc2 ω

2nngV

)1/2 [
â(t)eik·r − â†(t)e−ik·r

]
ek (7.44)

and we have taken ek to be real. Similarly, from equations (7.26)–(7.28), we write
the quantized fields

B̂(r, t) = i

(
µc2

2nngωV

)1/2

[â(t)eik·r − â†(t)e−ik·r ]k × ek (7.45)

D̂(r, t) = i
(

nε ω

2ngV

)1/2

[â(t)eik·r − â†(t)e−ik·r ]ek (7.46)

Ĥ(r, t) = i

(
c2

2nngµωV

)1/2

[â(t)eik·r − â†(t)e−ik·r ]k × ek. (7.47)
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These expressions apply to a single-mode field in a dispersive dielectric,
provided the mode frequency is far from any absorption resonance. In particular,
they apply to the case of an NIM where ε(ω), µ(ω), and n(ω) are all negative.
For the case of an NIM, note the importance in these equations of the fact that
ng > 0 [equation (7.20)].

The field energy (7.35) becomes, on quantization,

Ĥfield = ω(â†â + 1/2). (7.48)

The operator corresponding to the Poynting vector

Ŝ = Ê × Ĥ (7.49)

similarly, is

Ŝ = c2

nngV
(â†â + 1/2)ek × (k × ek) (7.50)

when we cycle-average. Writing

k = nω

c
z (7.51)

where z is the unit vector pointing in the z direction, we have

Ŝ = cω
ngV

(â†â + 1
2 )z = ωvg

V
(â†â + 1

2 )z

= zvg(Ĥfield/V ) = vg(Ĥfield/V ) (7.52)

where the group velocity vg = zc/ng = zvg. Equations (7.51) and (7.52) show
that, in an NIM, the Poynting vector and the k vector point in opposite directions:
E, H , and k define a left-handed triad. Note also that the Poynting vector and the
group velocity are in the same direction but that the group and phase velocities
are in opposite directions in an NIM.

The multimode generalization of (7.42), for instance, is

Ê(r, t) = i
∑

kλ

(
µc2 ω

2nngV

)1/2

[âkλ(t)eik·r − â†
kλ(t)e

−ik·r ]ekλ (7.53)

λ labels the polarization of mode k,λ (k · ekλ = 0, λ = 1, 2). More generally, we
can write such multimode expansions for situations where mode functions other
than plane waves are more convenient.

7.4.1 Radiative rates in negative-index media

The possibility that the refractive index can be negative obviously invites a
reconsideration of various processes. For example, it is well known that, in the
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absence of local field corrections, the spontaneous emission rate for an electric
dipole transition of frequency ω0 is A′ = n(ω0)A, where A is the free-space
Einstein A coefficient6. How is this formula to be understood if n(ω0) < 0?

The coupling constant for the field mode k,λ and the atomic transition with
electric dipole matrix element d in the −r · E interaction is

V (ω) = −i

(
µc2 ω

2nngV

)1/2

d · ekλ. (7.54)

Fermi’s golden rule then implies the spontaneous emission rate

2π |V (ω0)|2ρe(ω0) (7.55)

where ω0 is the transition frequency and ρe is the density (in energy) of final
states:

ρe(ω0) dω = V
(2π)3 d3k = V

(2π)3 k2 d%k dk

= V
8π3c3 n2(ω)ω2 d

dω
[n(ω)ω] dω d%k (7.56)

where d%k is the differential element of solid angle about k. The rate of
spontaneous emission into all solid angles and polarizations is then, from (7.54)–
(7.56) [225],

A′ = 2π µ(ω0)c2 ω0

2nngV

V n2(ω0)ω
2
0

8π3c3 ng(ω0)
∑

λ

∫
d%k |d · ekλ|2

= n(ω0)
µ(ω0)

µ0
A (7.57)

where A = |d|2ω3
0/3πε0 c3 is the free-space radiation rate. Equation (7.57)

differs from the familiar result cited earlier by the factor µ(ω0)/µ0, which ensures
that A′ > 0 in an NIM.

Absorption and stimulated emission are likewise affected. The Einstein B
coefficient is calculated in the same manner as A′ to be

B ′ = µ(ω0)/µ0

ng(ω0)n(ω0)
B (7.58)

where B is the coefficient for an atom in free space. Obviously B ′ > 0
for both positive- and negative-index media. This generalizes the expression
B ′ = B/n2(ω0) that appears frequently in the literature [226]. The latter is seen to
be applicable if dispersion is negligible [ng(ω0) → n(ω0)] and µ(ω0) ≈ µ0. The
expressions given here for A′ and B ′ also generalize the results obtained in [227],
where it was assumed that the host medium is non-magnetic (µ = µ0).
6 See, for instance, [224].
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7.5 Reversal of the Doppler and Cerenkov effects

One of the weird things about NIMs is that the Doppler effect is reversed: if a
source is moving towards a detector, the emitted radiation is observed to have a
smaller frequency than when the source is stationary [29, 228].

Consider an excited two-level atom of mass m moving with velocity v
in an NIM, and let ω0 be its natural transition frequency. The atom emits a
photon of wavevector k and frequency ω, after which it moves with velocity v′.
Conservation of energy gives7

1
2 mv′2 + ω = 1

2 mv2 + ω0 (7.59)

while conservation of linear momentum implies

mv′ = mv − k. (7.60)

Ignoring terms involving 1/c2 in this non-relativistic treatment—i.e. ignoring the
recoil energy 1

2
2k2 compared with mc2—and using

k = n ω

c
s (7.61)

where s is the unit vector in the direction of the Poynting vector (and the group
velocity), we obtain, from equations (7.59)–(7.61), the classical expression

ω ∼= ω01 + n
c
v cos θ (7.62)

where θ is the angle between v and s. Thus, for n < 0, a photon detected in the
direction of the atom’s initial velocity will have a frequency smaller than ω0; and
a photon detected in the opposite direction will have a frequency larger than ω0.
Since the Poynting vector of the emitted field points in the direction opposite to
k in an NIM (section 7.4), equation (7.60) implies that, upon emission, the atom
will recoil in the same direction as the Poynting vector of the emitted field in an
NIM.

Another effect that is ‘reversed’ in an NIM is the Cerenkov effect [29, 228,
229]. Consider an electron (for instance) with initial energy E moving with
velocity v in a medium with refractive index n and let E ′ be its energy after
emitting a photon of energy ω. Similarly, let p and p′ be the initial and final
linear momenta of the electron and k the wavevector of the emitted photon. Then,
equations (7.59) and (7.60) generalize to

E = E ′ + ω (7.63)

p = p′ + k (7.64)
7 The kinematic treatment of the Doppler and Cerenkov effects in this section follows Fermi’s
treatment of the Doppler effect [69] in terms of the recoil of the emitter, as well as Ginzburg’s related
discussion of Cerenkov radiation [229].
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where we now use the relativistic expressions

E =
√

m2c4 + p2c2 (7.65)

p = mv
√

1 − v2/c2
(7.66)

and, likewise, for E ′ and p′. For the wavevector k and the linear momentum k
of the photon, we again use equation (7.61).

If n = 1, equations (7.63)–(7.65) and (7.61) can only hold if ω = 0: a
particle in uniform motion in vacuum cannot radiate8.

If n #= 1, however, (Cerenkov) radiation is possible even if v is constant.
Equations (7.63)–(7.66) and (7.61) in this case imply [229]

ω = 2mc[n(ω)v cos θ − c]
[n2(ω) − 1]

√
1 − v2/c2

(7.67)

and

cos θ = c
n(ω)v

(
1 + ω

2mc2 [n2(ω) − 1]
√

1 − v2/c2
)

(7.68)

where θ is again the angle between v and s. In order to have ω > 0 and
| cos θ | < 1, it is necessary to have |vn(ω)/c| > 1. In other words, radiation
of frequency ω by a charge moving with constant velocity in a dielectric is only
possible if the velocity exceeds the phase velocity of light at the frequency ω. If
we let → 0, we recover the classical expression

cos θ = c
n(ω)v

(7.69)

for the emission cone of Cerenkov radiation. When n(ω) < 0, the direction of
Cerenkov radiation is reversed, i.e. the Poynting vector (and the group velocity)
of the emitted radiation makes an obtuse angle with the velocity of the electron;
and if the electron is incident on a medium with n(ω) < 0, radiation of frequency
ω will appear in the backward direction.

These effects follow from the fact that the phase and group velocities are
in opposite directions. As already mentioned, the possibility that the phase and
group velocities could be in opposite directions was known long before the current
interest in negative refractive index. In fact, the reversal of the Doppler and
Cerenkov effects when the phase and group velocities are opposite was noted
by Pafomov [228] in 1959 and is discussed, for instance, in the monograph by
Ginzburg [229]. Opposite phase and group velocities can occur in anisotropic
media or when there is spatial dispersion [230] or when the refractive index is
negative.

8 We are, of course, assuming that the internal state of the particle does not change.
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7.5.1 On photon momentum in a dielectric

The previous simple derivations rely on the assumption that the linear momentum
of a photon is given by

p = k (k = nω/c). (7.70)

The form of the linear momentum of the electromagnetic field in a dielectric
has been discussed and debated for many years; the review by Brevik [231] and
chapter 12 of Ginzburg [229] are particularly good references. The subject has
recently attracted renewed interest9. The two most frequently advocated forms of
the electromagnetic momentum density are the Abraham form10

gA = 1
c2 S = 1

c2 E × H (7.71)

and the Minkowksi form
gM = D × B. (7.72)

Equation (7.52) yields

gA = z
c2 vg(Hfield/V ) (7.73)

which implies that the linear momentum of a single photon of energy ω is [233]

pA = z
ω

c
vg

c
= 1

n(ω)

vg

c
k. (7.74)

For the Minkowksi form, we obtain instead

gM = εµzvg(Hfield/V ) (7.75)

which implies the photon linear momentum [233]

pM = n(ω)
vg

c
k. (7.76)

Note that

| pA| = |vg

c
| ω

c
(7.77)

and

| pM| = n2(ω)|vg

c
| ω

c
. (7.78)

9 See, for instance, the papers by Loudon [232] and Garrison and Chiao [233] and references therein.
10 Since the question of which form of the momentum is more appropriate in a given situation arises
in both classical and quantum theories, we do not bother to distinguish here between classical and
quantum fields.
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If dispersion is ignored (vg/c → 1/n), these expressions for pA and pM reduce
to those given by Ginzburg [229]:

| pA| = ω

c|n| (7.79)

and

| pM| = |n| ω

c
. (7.80)

Our derivations here for the Doppler and Cerenkov effects, which dealt
with a monochromatic field and did not require variations of the index with
respect to frequency, suggest that the Minkowksi form for the field momentum
is the correct one [equations (7.70) and (7.80)]. But this argument in favour
of the Minkowksi form is superficial since, as discussed by Ginzburg [229] for
the special case of a dispersionless and non-magnetic medium, the momentum
conservation laws based on the Minkowksi and Abraham forms of the field
momentum ‘are identical—they differ merely in the different splitting up into
terms of the same sum’ [229, p 283]. Thus, in the formulation using the Abraham
field momentum, there appears an additional momentum

pA
m = n2 − 1

c2

∫
d3r

∫
dt

∂

∂ t
(E × H) (7.81)

imparted to the dielectric. For a single-photon plane wave in the assumed
dispersionless and non-magnetic medium, it follows easily from this expression
that

pA
m = n − 1

n
ω

c
k
k

(7.82)

and, therefore, that [229]

pA + pA
m = 1

n
ω

c
k
k

+ n − 1
n

ω

c
k
k

= n
ω

c
k
k

= pM. (7.83)

Thus, in this model, the Minkowksi form of the momentum includes the Abraham
force on the medium and, while the Abraham form of the momentum might
be more fundamental [229], the ‘auxiliary’ Minkowksi form represents a useful
simplification. This simplification is evident in the derivations earlier for the
Doppler and Cerenkov effects.

It is interesting that Garrison and Chiao [233] find good agreement with the
Jones–Leslie experiment [234]—evidently one of the most careful experiments
on field momentum in a dielectric—if the ‘canonical’ photon momentum (7.70)
is assumed. The Abraham and Minkowksi forms, which both involve the group
velocity vg, yielded predictions differing by many standard deviations from the
experimental data. The subject of field momentum is a complicated and very
interesting one but further discussion here would take us too far afield.
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7.6 Discussion

Let us now summarize and discuss a bit further the most important points thus
far of this chapter. The main one, of course, is that negative values of ε and
µ imply a negative refractive index. Negative values of ε or µ are well known
to occur but the frequencies at which negative values of ε are possible are
generally very different from those at which negative values of µ are possible.
In fact, there are no known naturally occurring materials for which ε and µ

are simultaneously negative—simultaneously negative ε and µ are realized in
artificial metamaterials.

A negative refractive index requires consideration of dispersion for
consistency, e.g. for the electromagnetic energy density to be positive.

In a metamaterial, the wavevector k of a plane wave is opposite in direction
to the Poynting vector S. The Doppler effect is reversed in a metamaterial and
a spontaneously emitting atom will experience a recoil momentum in the same
direction as the Poynting vector of the emitted light. Similarly, if light in a
metamaterial is incident on a reflecting interface, it will impart to the reflector
a linear momentum in the direction opposite to the Poynting vector. This was
noted by Veselago [29]:

A monochromatic wave in a left-handed medium can be regarded as a
stream of photons, each having a momentum p = k, with the vector k
directed toward the source of radiation, not away from it as is the case
in a right-handed medium. Therefore a beam of light propagated in a
left-handed medium and incident on a reflecting body imparts to it a
momentum p = N k (N is the number of incident photons) directed
toward the source of the radiation . . . Owing to this the light pressure
characteristic for ordinary (right-handed) substances is replaced in left-
handed substances by a light tension or attraction.

Such strange consequences of a negative index are perfectly consistent with the
conservation of energy and linear momentum.

As a consequence of Snell’s law, light incident from an ordinary medium and
transmitted by an NIM will refract to the same side of the normal as the incident
light, i.e. the angle of transmission is negative. This implies the possibility of a
planar lens made from a negative-index material, as discussed in the following
section.

If absorption (or amplification) is negligible, vg in an NIM is a positive
number [equation (7.20)] but the direction of the group velocity vector, which
is the same as the direction of the Poynting vector [equation (7.52)], is opposite
to that of the wavevector k. k, in this case, points towards the source while the
group velocity points away from the source. In other words, the phase velocity is
opposite in direction to the direction of energy flow. When the group velocity is
opposite in direction to the phase velocity, it is said to be negative: Veselago [29]
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remarked that the term ‘left-handed substance’ is equivalent in this context to the
term ‘substance with negative group velocity.’

In chapter 2, we discussed experiments in which vg is negative. In those
experiments, the wavevector and phase velocity are essentially the same for the
incident and transmitted fields. When light is incident from a medium with
positive index to a passive medium with negative index (or vice versa), however,
the wavevector and phase velocity are reversed and the angle of transmission is
negative, while the scalar vg remains positive.

As already noted, the possibility that phase and group velocities could be in
opposite directions was noted a century ago by Lamb [220] and Schuster [221].
It should also be noted that Pocklington [235] around the same time considered
an example in which a displacement produced instantaneously at a point on a
mechanical chain could propagate with a group velocity pointing away from
that point but with a phase velocity pointing towards it, a result Pocklington
considered ‘most remarkable’.

It should be borne in mind that the characterization of a medium by a
refractive index presumes that there are many scattering elements, e.g. atoms,
within a wavelength: this was briefly discussed near the end of section 2.1.
As discussed in the following chapter, the basic elements of metamaterials are
typically metallic structures configured to produce negative ε and µ in a narrow
spectral range and the spacing of these structures must be small compared
with a wavelength in order to characterize the ‘medium’ by a refractive index
meaningfully.

7.7 Fresnel formulas and the planar lens

How, if at all, are the laws of reflection and refraction modified when we allow
for the possibility of negative refractive indices? Consider a plane monochromatic
wave

Ei = E0ie−i(ωt−ki·r) (7.84)

incident on a planar interface z = 0 of two media characterized by the
permittivities εi, εt and the permeabilities µi, µt (figure 7.2). For the reflected
and transmitted fields, we write similarly

Er = E0re−i(ωt−kr ·r) (7.85)

and
Et = E0te−i(ωt−kt·r). (7.86)

The Maxwell equation ∇ × E = −∂ B/∂ t implies that the corresponding B fields
are

Bi = 1
ω

ki × Ei Br = 1
ω

kr × Er Bt = 1
ω

kt × Et (7.87)
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Figure 7.2. Wavevectors for incident (ki), transmitted (kt) and reflected (kr) plane waves
at a planar interface at z = 0 between two media characterized by εi, µi and εt, µt. The
angles of incidence, transmission, and reflection are θi, θt, and θr, respectively.

and similar expressions for the fields D and H follow from the constitutive
relations. Here

k2
j = ω2ε jµ j ( j = i, r, t) (7.88)

and, as discussed in section 7.2, we should take the negative square root if ε j and
µ j are both negative.

In order to satisfy the boundary conditions for the fields at all points in the
plane z = 0, we must have11

(ki · r)z=0 = (kr · r)z=0 = (kt · r)z=0. (7.89)

Thus (figure 7.2), ki sin θi = kr sin θr or, since ki = kr, θi = θr: the angles
of incidence and reflection are the same regardless of the signs of the refractive
indices. Similarly ki sin θi = kt sin θt or

ni sin θi = nt sin θt (7.90)

so that Snell’s law also holds regardless of the signs of the indices.
The derivation of the Fresnel formulas when the refractive index might be

negative also proceeds along standard lines using equations (7.84)–(7.87) and the
boundary conditions that the tangential components of E and H , and the normal
components of D and B, are continuous. Thus, for E0i perpendicular to the plane
of incidence, we obtain

E0t

E0i
= 2(ni/µi) cos θi

(ni/µi) cos θi + (nt/µt)
√

1 − (n2
i /n2

t ) sin2 θi

(7.91)

11 The assumption that the frequency is the same on both sides of the interface is justified similarly by
the fact that the boundary conditions at z = 0 must also be satisfied at all times [14].
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when the angle of incidence θi is less than the critical angle

θc = sin−1 |nt/ni|. (7.92)

For either positive- or negative-index media, the ratios ni/µi and nt/µt are
positive and equation (7.91) holds in either case. Note, though, that a form
like [14]

E0t

E0i
= 2ni cos θi

ni cos θi + (µi/µt)
√

n2
t − n2

i sin2 θi

(7.93)

for the transmission coefficient follows from (7.91) only if nt is positive. But if
we replace ni, nt, εi, εt, µi and µt in (7.93) by their absolute values, the formula
is valid regardless of whether we have positive- or negative-index media. For the
reflection coefficient, similarly, we obtain

E0r

E0i
=

(ni/µi) cos θi − (nt/µt)
√

1 − (n2
i /n2

t ) sin2 θi

(ni/µi) cos θi + (nt/µt)
√

1 − (n2
i /n2

t ) sin2 θi

(7.94)

when E0i is perpendicular to the plane of incidence. The form [14]

E0r

E0i
=

ni cos θi − (µi/µt)
√

n2
t − n2

i sin2 θi

ni cos θi + (µi/µt)
√

n2
t − (n2

i ) sin2 θi

(7.95)

which assumes nt > 0, is seen to be applicable provided we again replace ni, nt,
εi, εt, µi, and µt by their absolute values. More generally, the standard Fresnel
formulas for positive-index media are applicable to negative- as well as positive-
index media for θi < θc, for any polarization of the field, provided we replace all
n, ε, and µ in these formulas by their absolute values.

The situation is a bit more complicated when the angle of incidence exceeds
the critical angle for total internal reflection. In this case, we must replace

cos θt =
√

1 − (n2
i /n2

t ) sin2 θi (7.96)

by

±i
√

(n2
i /n2

t ) sin2 θi − 1. (7.97)

The choice of sign is dictated by the requirement that the transmitted field, which
varies with z as exp[i(ωz/c)nt cos θt], should not diverge as z → ∞. Thus, for
θi > θc at an interface with nt > 0, we choose the + sign in (7.97) and then, from
(7.94), we obtain the amplitude reflection coefficient [236]

r = cos θi − iα
cos θi + iα

(7.98)

α =
∣∣∣∣
µi

µt

∣∣∣∣
√

sin2 θi − n2
t /n2

i . (7.99)
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For θi > θc at an interface in which nt < 0, however, we must choose the −
sign in (7.97) so that the field does not diverge. Then, instead of (7.98), we obtain

r = cos θi + iα
cos θi − iα

= |r |eiφr . (7.100)

It is interesting that, since the Goos–Hänchen shift depends on φr , it will be in
opposite directions when nt > 0 and nt < 0 [236, 237].

Consider the case in which light is incident from a positive-index medium
onto a negative-index medium such that εt = −εi < 0 and µt = −µi < 0.
Then, nt = −ni and equation (7.94) gives E0r/E0i = 0. The same is true if
E0i is parallel to the plane of incidence. In other words, when εt = −εi and
µt = −µi, there is no reflected light, no matter what the angle of incidence or the
field polarization.

It is very interesting to consider a planar negative-index material of width d
in vacuum [29]. Suppose that the NIM has ε = −ε0 and µ = −µ0, so that there
is no reflected light, and that a point source is at a distance % < d from the NIM
(figure 7.3) . At the front surface, the rays from the point source are refracted
to the same side of the normal to the interface as the incident rays and, since the
refractive index of the NIM is −1, the angle of refraction is just the negative of
the angle of incidence for each ray. Since % < d , the rays are, therefore, focused
to a point at a distance % inside the NIM. The rays from this focal point are then
refracted at the back surface of the NIM, and again the angle of refraction is
just the negative of the angle of incidence, so that there is a second focal point, in
vacuum, at a distance d −% from the back surface. The net effect is that, according
to geometrical optics, a point source in front of the planar NIM is focused to a
point behind it. In other words, an NIM can be used to make a planar lens as well
as convex- and concave-shaped lenses12.

Such a focusing element is not a lens in the conventional sense, as it does
not focus rays from infinity to a point. Note also that the size of the image of an
extended object will equal the size of the object, i.e. there is no magnification.
And unlike a conventional lens, which acts to equalize the optical pathlengths
(refractive index integrated over distance) of incoming parallel rays, the lens of
figure 7.3 focuses rays by undoing (because n < 0) the phases they accrue in
traversing the same distance through vacuum. Finally, a conventional lens, no
matter how good the glass or the surfaces, will introduce aberrations that degrade
the image quality even for monochromatic light, whereas the lens of figure 7.3 is
aberration-free.

12 Convex and concave lenses made from an NIM will have the opposite effect of conventional lenses:
a convex lens causes rays to diverge and a concave lens causes them to converge. This is another
consequence of rays being refracted to the same side of the normal to the lens surface as the incident
rays.
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Figure 7.3. A planar slab of negative-index material of width d will produce two focal
points, one inside the material and the other outside, when a point source is placed a
distance ! < d from it. With ε = −ε0 and µ = −µ0, there are no reflected waves
when the lens is in vacuum and a real image appears at a distance 2d from the object.

7.8 Evanescent waves

It turns out that something more subtle than ‘light bending the wrong way’
happens in an NIM slab: the behaviour of evanescent waves is very different. This
leads to one of the most intriguing prospects for NIMs, namely the possibility of
lenses with subwavelength resolution (section 7.9). In this section, we will briefly
review some aspects of evanescent waves.

Suppose we expand the electric field in the half-space z > 0 in terms of
spatial and temporal frequency components as

E(x, y, z, t) =
∫ ∞

0
dω

∫ ∞

∞
dkx

∫ ∞

∞
dky A(kx , ky,ω, z)e−i(ωt−kx x−ky y)

(7.101)
where, as usual, the real part of the right-hand side is implicit. If any sources of
radiation are present only in the half-space z < 0, we have

∇2 E − 1
c2

∂2 E
∂ t2 = 0 (7.102)

for z > 0 and, therefore,

∂2 A
∂z2 +

(
ω2

c2 − k2
x − k2

y

)
A(kx , ky,ω, z) = 0 (7.103)

which has solutions of the form

A(kx , ky,ω, z) ∝ e±ikz z (7.104)
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where

kz =
√

ω2

c2 − k2
x − k2

y . (7.105)

kz can be real or imaginary, depending on whether k2
x + k2

y < ω2/c2 or k2
x + k2

y >

ω2/c2. In the latter case, we have13

kz = i|kz|. (7.106)

Then [238]

E(x, y, z, t) =
∫ ∞

0
dω

∫ ∫

k2
x +k2

y<ω2/c2
dkx dky Aord(kx , ky,ω)

× ei(kx x+ky y+kz z−ωt)

+
∫ ∞

0
dω

∫ ∫

k2
x +k2

y>ω2/c2
dkx dky Aev(kx , ky,ω)

× ei(kx x+ky y−ωt)e−|kz |z . (7.107)

The first term on the right-hand side is a superposition of ordinary
(homogeneous14) plane waves propagating in the positive z direction15. The
second term defines a superposition of evanescent wave components that decay
exponentially with z.

Evanescent waves have not received much attention in the standard texts on
optics or electromagnetism16 but it is clear from the derivation of (7.107) that they
are required for completeness. They are present whenever the field in some plane
(z = 0) has spatial frequency components kx , ky such that k2

x + k2
y > ω2/c2, i.e.

whenever the field in this plane varies on a scale comparable to the wavelength or
smaller. The best known example where evanescent waves occur is total internal
reflection when a beam of light is incident from glass, for example, onto a glass–
air interface at an angle greater than the critical angle for total internal reflection.
On the glass side k2

x + k2
y < n2ω2/c2, corresponding to ordinary propagation, and

the variations in the field occur on a scale larger than a wavelength. On the air
side, however, k2

x + k2
y > ω2/c2 and the spatial variations of the field are on a

scale smaller than a wavelength. An evanescent field, therefore, appears on the
air side and its intensity decays with distance z as exp(−az), where

a = 4πna

λ

√
n2

g

n2
a

sin2 θi − 1 (7.108)

13 We do not consider solutions with kz = −i|kz | because they grow exponentially with z and are,
therefore, unphysical. Similarly kz = 0 is excluded because it would imply from equation (7.103) a
solution that grows linearly with z.
14 ‘Homogeneous’ refers to the fact that the planes of constant amplitude and phase are identical,
whereas they are different for the evanescent or ‘inhomogeneous’ plane waves.
15 We exclude plane waves propagating in the negative z direction in the half-space z > 0 because, by
assumption, any sources of the field are in the z < 0 half-space.
16 A serious treatment of evanescent waves may be found in Clemmow [239].
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na and ng are the refractive indices of air and glass, respectively, θi is the angle of
incidence, and λ is the vacuum wavelength. If a second piece of glass is brought
near the first piece, leaving an air gap between them, the internal reflection is
‘frustrated’ and light can propagate into the second glass with a transmission
coefficient ∼ 1 if the width of the air gap is small compared with the wavelength.
A nice demonstration of frustrated total internal reflection is described by Zhu et
al [46], who also discuss some of the long history of the subject.

The expansion (7.107) shows that the evanescent waves do not undergo any
variation of phase in the z direction. This is related to the fact that evanescent
waves—and their quantum-mechanical analog of tunnelling into a classically
forbidden region [46]—can exhibit ‘superluminal’ behaviour, as discussed in
chapter 2. The only phase variation of the evanescent waves is along their
propagation direction, parallel to the interface.

An important characteristic of evanescent waves is that they do not transport
energy in the direction in which they decay. Consider, for example, the
monochromatic evanescent wave with electric field

E = xE0 cos(ky − ωt)e−K z . (7.109)

The Poynting vector S = E × H is

S = E2
0

ωµ
[k y cos2(ky − ωt) − K z cos(ky − ωt) sin(ky − ωt)]e−2K z (7.110)

and the component of S in the z direction has a cycle average of zero.

Because of their exponential decay with distance, evanescent waves are said
to belong to the near field of the object, as opposed to the ‘far field’ associated
with the homogeneous plane-wave components. Near-field optics (e.g. a scanning
tunnelling microscope) involves distances close enough to an object that the
evanescent waves are captured, giving information about the object that is not
available in the far field [240].

Quantization of evanescent waves has been carried out by Carniglia and
Mandel [238]. In their approach, each triplet of incident, reflected, and
transmitted waves is regarded as a single mode for the purpose of quantization.
Experiments [241] have demonstrated that evanescent photons are emitted and
absorbed as expected from this theory, so that a single photon can be associated
with a homogeneous wave on one side of the interface and an evanescent wave on
the other.

Expansions in evanescent waves of the field from a uniformly moving charge
have been usefully employed to describe Cerenkov, Smith–Purcell and related
effects [242].
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7.8.1 Limit to resolution with a conventional lens

The field radiated or reflected by a two-dimensional object can be expanded in a
Fourier series with spatial frequency components kx , ky such that

k2 = k2
x + k2

y + k2
z (7.111)

with k = ω/c in vacuum. Large values of kx and ky correspond to small spatial
features, so that for good image resolution it is necessary to access high spatial
frequencies. Equation (7.111) suggests that the maximum possible resolution "

is achieved when k2
x + k2

y = k2
max = k2:

" ∼ 2π

kmax
= 2πc

ω
= λ. (7.112)

Implicit in this argument is the assumption that kmax = k, i.e. that k2
z ≥ 0. In

other words, the limit (7.112) assumes that the accessible field from the object has
no evanescent components. Since the evanescent components of the field decay
with distance z from the object as

e−|kz |z = exp
(
−

√
k2

x + k2
y − ω2/c2z

)
(7.113)

the largest spatial frequency components decay most rapidly with z. In particular,
spatial frequencies corresponding to spatial features on a scale of λ on the object
do not appear in the field at distances greater than about λ from the object. For
this reason, the maximum resolution possible with a conventional lens is given by
(7.112), regardless of how good the glass is, or how large the aperture is. Features
on the scale of the wavelength or smaller cannot be resolved by an ordinary lens
because an ordinary lens does not capture the evanescent components of the object
field.

7.9 The ‘perfect’ lens

The work of Veselago and others on negative refraction did not attract much
interest until the publication of a theoretical paper by Pendry [243] entitled
‘Negative Refraction Makes a Perfect Lens’, which was stimulated by the first
experimental observations of a negative refractive index by Smith et al [244,245].
General and authoritative overviews of work in this field in the few years
following these publications are given by Pendry [246] and Pendry and Smith
[247].

Pendry [243] began with the observation that the resolution of a conventional
lens is limited by the fact that evanescent waves do not contribute to the image
[equation (7.112)]. He then showed that, for the planar negative-index lens
of figure 7.3, the evanescent waves grow with distance into the lens and are
transmitted, so that all spatial frequency components can, in principle, contribute
to the image.
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Figure 7.4. An evanescent wave incident on a negative-index half-space.

7.9.1 Evanescent wave incident on an NIM half-space

In section 7.7, we considered the transmission and reflection of a homogeneous
plane wave incident from a positive-index medium onto either a positive- or a
negative-index medium. Let us consider now the case where an evanescent wave
from a source at z = −z0 < 0 is incident from vacuum onto an NIM (figure
7.4). For polarization perpendicular to the plane of incidence (yz), we write the
incident field as17

E = E0xei(ky y+kz z)e−iωt (7.114)

for z > −z0, where

kz = i
√

k2
y − ω2/c2 (k2

y > ω2/c2). (7.115)

Similarly, the transmitted field is written as

E′ = E ′
0xei(k′

y y+k′
z z)e−iωt (7.116)

k ′
z = i

√
k2

y − εµω2 (k2
y > εµω2). (7.117)

The corresponding expression for the reflected field is written using double
primes, as in Jackson [14]. Using the expressions for D, D′, D′′, etc that follow
from Maxwell’s equations, and enforcing the boundary conditions at z = 0, we
obtain straightforwardly the amplitude transmission and reflection coefficients r
and t , respectively, at the interface (z = 0) between vacuum and the NIM:

t = 2µkz

µkz + µ0k ′
z

r = µkz − µ0k ′
z

µkz + µ0k ′
z
. (7.118)

17 Similar results for the NIM half-space and slab are obtained when the polarization is parallel to the
plane of incidence. See section 8.6.
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It appears from (7.118) that t and r diverge as ε → −ε0 and µ → −µ0, i.e.
when the half-space in figure 7.4 has refractive index n′ = −1. However, as in
many situations in physics, a divergence is avoided when dissipation is taken into
account. Let us account for absorption in the NIM by writing

ε = −ε0(1 − iδ) µ = −µ0(1 − iδ) (δ > 0). (7.119)

Then the denominator in (7.118) does not go to zero. For small δ [εµ ∼=
ε0µ0(1 − 2iδ)],

t ∼= 2i
δ

(
1 − ω2

k2
yc2

)
r ∼= 2i

δ

(
1 − ω2

k2
yc2

)
(7.120)

and, in the limit of large spatial frequency ky , t ∼= r ∼= 2i/δ.

7.9.2 Evanescent wave incident on an NIM slab

In the case of an evanescent wave incident on a slab, we also require the
transmission and reflection coefficients t ′ and r ′ for the z = d interface in figure
7.5. t ′ and r ′ can be written immediately by simply interchanging µ0k ′

z and µkz
in equations (7.118):

t ′ = 2µ0k ′
z

µkz + µ0k ′
z

r ′ = µ0k ′
z − µkz

µkz + µ0k ′
z
. (7.121)

For small δ,

t ′ ∼= −2i
δ

(
1 − ω2

k2
yc2

)
r ′ ∼= −2i

δ

(
1 − ω2

k2
yc2

)
. (7.122)

Figure 7.5. An evanescent wave incident on a negative-index slab of thickness d .
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The transmission coefficient tS for the slab is obtained in the usual fashion
by adding up the contributions associated with all the possible reflections within
the slab:

tS = tt ′eik′
zd + tr ′r ′t ′e3ik′

zd + tr ′4t ′e5ik′
zd + . . .

= tt ′eik′
zd

1 − r ′2e2ik′
zd

=
(4/δ2)(1 − ω2/k2

yc2)2 exp
(
−

√
k2

y − ω2/c2d
)

1 + (4/δ2)(1 − ω2/k2
yc2)2 exp

(
−2

√
k2

y − ω2/c2d
) . (7.123)

This is a remarkable result: an evanescent wave incident on a negative-index
material with ε = −ε0 and µ = −µ0 results in an amplified field:

tS = exp(
√

k2
y − ω2/c2d) (7.124)

in the limit δ → 0 of no absorption. Let us note that, after some algebra, we can
write tS in a form that shows explicitly that it contains exponentially growing as
well as exponentially decaying parts [248]:

tS =
( [

1
2

+ 1
4

(
µ0K ′

z

µKz
+ µKz

µ0 K ′
z

)]
eK ′

zd

+
[

1
2

− 1
4

(
µ0K ′

z

µKz
+ µKz

µ0 K ′
z

)]
e−K ′

zd
)−1

(7.125)

where
Kz =

√
k2

y − ω2/c2 K ′
z =

√
k2

y − εµω2. (7.126)

Normally the exponentially decaying part of tS will dominate. But, for ε →
−ε0 and µ → −µ0, the exponentially decaying part vanishes and only the
exponentially growing part remains: tS → exp(Kzd). This shows again the very
special significance of ε = −ε0 and µ = −µ0 for superlensing.

In order for this amplification to occur, the absorption must be small enough
that the second term in the denominator in the third line of equation (7.123) is
large compared with unity. For sufficiently large k2

y , this requires

δ

2
$ exp

(
−

√
k2

y − ω2/c2d
)

. (7.127)

For a given value of δ, therefore, there should be amplification up to a spatial
frequency of magnitude

|ky| ∼ 1
d

| ln δ|. (7.128)

These results imply that the planar NIM lens of figure 7.3 is ‘perfect’ in
the limit of zero absorption: there are no reflections off it (since ε = −ε0 and
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µ = −µ0), it is aberration-free, and it transmits evanescent waves as well as
homogeneous plane waves. The spatial resolution associated with a wavelength
at which the absorption is characterized by δ is

" ∼ 2πd
| ln δ| . (7.129)

Thus, the negative-index lens can beat the resolution limit " = λ [equation
(7.112)] if

δ < e−2πd/λ. (7.130)

Absorption can, therefore, be a big hurdle in the way of superlensing [249] but it
is not a fundamental limitation [250].

Aside from practical matters like a finite lens aperture, the superlensing
possible with an NIM is limited primarily by absorption: NIMs designed for
subwavelength resolution must have very small losses. The loss will, of course,
be wavelength-dependent, as will be the smallest achievable resolution. And
since NIMs are necessarily dispersive and typically narrowband (chapter 8),
subwavelength resolution will be possible only within a narrow spectral range.

7.9.3 Surface modes

The amplification of the incoming evanescent wave that occurs in an NIM slab
with ε = −ε0 and µ = −µ0 [equation (7.124)] does not arise, of course, from
any gain (e.g. population inversion) in the material. As discussed in section 7.8,
the Poynting vector of an evanescent wave has a vanishing cycle average in
the direction of exponential decay (or growth): no energy is transported, on
average, in that direction by the evanescent wave. As in the treatment by Carniglia
and Mandel [238], the triplet of incoming, reflected, and transmitted waves can
be regarded as a single field mode which can be normalized and, if desired,
quantized. The exponential growth does not represent amplification of field
energy at the expense of the (passive!) medium in which it propagates. In order
to further appreciate how special is the situation when µ = −µ0 and ε = −ε0,
we will now review briefly the concept of a surface mode localized at an interface
between two dielectrics [251].

We consider first a dielectric characterized by ε and µ and occupying the
half-space z > 0, the left half-space (z < 0) being vacuum. A surface mode is,
by definition, localized at the interface z = 0, i.e. the fields decay exponentially
with distance on both sides of the interface. We, therefore, write, for polarization
perpendicular to the (yz) plane of incidence,

E = Axei(ky y−ωt)eKzz (z < 0) (7.131)

E = Bxei(ky y−ωt)e−K ′
z z (z > 0) (7.132)

and, likewise, using ∇ × E = −µ∂ H/∂ t ,

H = − i
µ0ω

(Kz y − iky z)Aei(ky y−ωt)eKz z (z < 0) (7.133)
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H = − i
µω

(−K ′
z y − iky z)Bei(ky y−ωt)e−K ′

z z (z > 0) (7.134)

where Kz and K ′
z are defined by (7.126). The boundary condition that the

tangential component of E is continuous implies that A = B , while the condition
that the tangential component of H is continuous then yields the dispersion
relation [252]

K ′
z

µ(ω)
+ Kz

µ0
= 0 (7.135)

which must be satisfied if a surface mode with polarization perpendicular to the
plane of incidence is to exist. We obtain similarly the condition [252]

K ′
z

ε(ω)
+ Kz

ε0
= 0 (7.136)

for the existence of a surface mode with polarization parallel to the plane of
incidence.

Kz and K ′
z in the dispersion relations (7.135) and (7.136) for surface modes

are both real and positive. Therefore, since εµ > 0, these dispersion relations can
only be satisfied at frequencies ω for which both µ(ω) and ε(ω) are negative.
In other words, surface modes can only be supported at a vacuum–dielectric
interface if the dielectric has negative refractive index. In this case, surface
modes—or surface polaritons—are possible in the absence of any externally
applied field, provided, of course, that the dispersion relations are satisfied.

Next consider the possibility that surface modes can exist at both interfaces
(z = 0 and z = d) between vacuum and a dielectric slab of thickness d . The
calculation proceeds as in the case of the dielectric half-space, and the imposition
of the boundary conditions leads easily to the dispersion relations [253]

K ′
z

Kz
tanh

(
1
2

K ′
zd

)
= − µ(ω)

µ0
(7.137)

K ′
z

Kz
coth

(
1
2

K ′
zd

)
= − µ(ω)

µ0
(7.138)

for polarization perpendicular to the yz plane and

K ′
z

Kz
tanh

(
1
2

K ′
zd

)
= −ε(ω)

ε0
(7.139)

K ′
z

Kz
coth

(
1
2

K ′
zd

)
= −ε(ω)

ε0
(7.140)

for polarization parallel to the yz plane.
These dispersion relations determine what surface modes can be resonantly

excited: for imaging by a planar NIM lens, they are deleterious in that they will
skew the spatial frequency distribution in favour of the resonant modes. However,
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when ε(ω) = −ε0 and µ(ω) = −µ0 these relations can only be satisfied for
ky = ∞. In fact, it is only when ε(ω) = −ε0 and µ(ω) = −µ0 that no
surface modes are resonantly excited for any finite value of the spatial frequency
ky [248]. Here we have another example of the special significance and advantage
of ε/ε0 = µ/µ0 = −1.

7.10 Elaborations

There are now hundreds of papers on the subject of negative refractive index
and the possibility of superlensing. As discussed in the following chapter, there
are compelling demonstrations of ‘metamaterials’ with negative refractive index.
The special case ε = −ε0 and µ = −µ0 of interest for superlensing will
likely be more difficult to realize: the main challenge in this case is to design
a metamaterial with very low absorption [250] since, as the preceding discussion
indicates, even a small degree of absorption can substantially limit the resolution
that is theoretically possible with a planar NIM lens.

Since the object has been assumed to be at a distance # < d from the lens
(figure 7.3), exp(−2πd/λ) < exp(−2π#/λ) and the condition (7.130) requires
that

δ < e−2π#/λ (7.141)

or that the absorption coefficient18

a <
4π

λ
e−2π#/λ. (7.142)

Thus, if the absorption is not sufficiently small, it may be necessary to have
the object very close to the lens surface [254]. Then it is not clear what major
advantages an NIM lens might offer compared with other near-field microscopies.

Even in the absence of absorption, the real parts of ε/ε0 and µ/µ0 must
not deviate far from −1 if perfect lensing is to be achieved. Merlin [255] has
obtained an analytical solution for the resolution scale ' = 2π/|ky|max [cf
equations (7.112) and (7.128)] under the assumption that the refractive index
n = −

√
1 − σ , |σ | $ 1:

' = −2πd
ln |σ/2| (7.143)

which is consistent with a heuristic argument by Smith et al [248] as well as an
analysis by Gómez-Santos [256]. This shows the crucial importance for perfect
lensing of having n very nearly equal to −1.

Ziolkowksi and Heyman [222] have carried out a numerical study of wave
propagation in an NIM. They conclude that the perfect lens effect is only possible
when ε/ε0 = µ/µ0 = −1 and when there is no absorption or dispersion;
otherwise a monochromatic wave ‘is channeled into beams rather than being
18 Note that n2

R − n2
I + 2inRnI = εµ/ε0µ0 = 1 − 2iδ, so that a = 2ωnI/c = 4πδ/λ for nR = −1.
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focused and, hence, the Pendry perfect lens effect is not realizable with any
realistic metamaterial’.

It is evident that the question of the practicality of perfect lensing will only
be decided definitively by experiment.

7.11 No fundamental limit to resolution

Claims of subwavelength resolution occasionally elicit scepticism on the grounds
that diffraction sets a fundamental resolution limit ! = λ. This, of course, is
false.

In 1928, Synge [257] published a paper in which he suggested a way to
obtain subwavelength resolution. Synge’s proposal was very simple, the key idea
being to use a microscope aperture smaller than a wavelength. Such an aperture
in an opaque screen is illuminated and the light from it is incident on a specimen
placed very close to the screen, so that the light does not diffract as it propagates to
the specimen and can be used to form an image that is not limited by diffraction.
Technological difficulties made Synge’s proposal impracticable at the time but
subwavelength resolution using a subwavelength aperture was demonstrated with
microwaves in 1972 [258] and with optical wavelengths in the mid-1980s [259].
These near-field techniques demonstrate that the resolution limit ! = λ of a
conventional lens is certainly not a fundamental limit. The superlensing based on
a negative-index lens also demonstrates this point, albeit mainly theoretically thus
far19.

That the diffraction limit is not a fundamentally unbreakable one can also
be seen from a purely formal standpoint. The Fourier transform of a finite two-
dimensional source is an analytic function of the spatial frequencies kx , ky and, if
this function is given in any finite region of the kxky plane, it can be determined
over the entire plane. In particular, there is no upper limit to the spatial frequencies
at which this function can, in principle, be determined and, therefore, no limit, in
principle, to resolution.

7.12 Summary

There is nothing to prevent the refractive index from being negative, although
negative-index materials (NIMs) are only known to occur in specially designed
metamaterials. Propagation of light in an NIM provides an example of what we
have called left-handed light, in which the Poynting vector E × H points in the
direction opposite to the wavevector k and the phase and group velocities are,
therefore, in opposite directions.

Causality requires that the refractive index be negative when both the electric
permittivity ε and the magnetic permeability µ are negative. Negative index can
19 Experimental evidence for subwavelength resolution using negative refraction is described in the
following chapter.
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be paradoxical (e.g. the energy density can be negative) unless dispersion is taken
into account. Even in the absence of paradoxes, a negative refractive index leads
to such unfamiliar consequences as reversed Doppler and Cerenkov effects.

One of the most intriguing potential applications of NIMs is in imaging:
a planar NIM with ε = −ε0 and µ = −µ0 can function as a ‘perfect’ lens
in which there are no reflections off the lens, there are no aberrations, and all
spatial frequencies including those associated with evanescent waves contribute
to the image, so that subwavelength resolution is, in principle, possible. The
condition ε = −ε0 and µ = −µ0 also prevents surface modes from being
resonantly excited, so that their contribution to the image is not overly weighted
compared with the spatial frequency distribution of the field from the source being
imaged. The principal challenge in actually realizing superlensing with an NIM is
to make ε/ε0 and µ/µ0 very nearly equal to −1 and to have the absorption very
small at a frequency for which this occurs. Otherwise, the absorption limits the
range of spatial frequencies that can contribute to the image. As discussed in the
following chapter, some consequences of negative refraction have already been
demonstrated experimentally.
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Chapter 8

Metamaterials for left-handed light

As noted in the preceding chapter, there are no naturally occurring materials
known to have simultaneously negative electric permittivity ε and magnetic
permeability µ. Negative values of ε and µ tend to occur over narrow frequency
ranges around very different frequencies. However, metamaterials having
simultaneously negative values of ε and µ at particular wavelengths have been
fabricated and shown to exhibit the predicted negative refractive index. In this
chapter, we describe some of the theoretical and experimental work on materials
exhibiting a negative refractive index.

We begin by considering the type of metamaterial that was first used to
produce a negative index of refraction. This material consists of a periodic
thin-wire array that gives rise to an effective permittivity that is negative and a
periodic array of ‘split ring resonators’ giving a negative effective permeability.
Combining the two periodic arrangements in a composite structure has been
shown to produce a negative index of refraction for microwaves. Metamaterials
consisting of periodic microwave transmission line structures are considered next
and experiments demonstrating the negative-index, focusing and evanescent-wave
properties of such structures are described. Finally we describe other materials,
such as photonic crystals, that have been used to demonstrate negative refraction
and some of its consequences.

8.1 Negative permittivity

Recall that the simplest model for a plasma yields the permittivity

ε(ω)/ε0 = 1 −
ω2

p

ω2 (8.1)

where the plasma frequency ωp is given by

ω2
p = Ne2

mε0
(8.2)
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with N , e, and m the electron density, charge, and mass, respectively. To get
a negative ε, all we have to do is choose the field frequency ω to be below the
plasma frequency. Or, for a given field frequency, we can choose a metal with
a plasma frequency larger than ω. The plasma frequency for the electron gas in
a metal is typically in the ultraviolet: for copper, for example, λp = 2πc/ωp =
115 nm. Visible radiation does not penetrate very far into such a medium, the
only allowed modes being evanescent.

Things are not quite so simple. Dissipation changes the dielectric function
(8.1) to

ε(ω)/ε0 = 1 −
ω2

p

ω(ω + iγ )
(8.3)

where the damping rate γ is typically significant at infrared and lower
frequencies; and, for copper, γ ∼= 4 × 1013 rad s−1. At frequencies ω $ γ ,
the imaginary part of ε(ω) is dominant. Instead of surface modes associated
with collective electron oscillations (surface plasmons), ‘Life becomes rather dull
again’ [260]. At low frequencies, the attenuation coefficient is

aabs(ω) = 2ω

c
nI(ω) ∼= ωp

c

√
2ω

γ
(8.4)

and the field does not penetrate significantly into the metal. At high frequencies
(ω % ωp), there is transmission but, in this case, ε(ω) > 0 and is not of interest
for the purpose of realizing a negative refractive index.

Prior to the interest in negative-index materials (NIMs), Sievenpiper et al
[261] demonstrated that a three-dimensional copper wire mesh with a periodic
diamond-like structure can act as photonic bandgap ‘crystal’ for microwaves.
The wires were 1 cm long and had a 1.25-mm square cross section and the
lattice spacing was 2.33 cm. A range of forbidden transmission frequencies was
observed to extend from zero frequency up to a cutoff frequency of 6.5 GHz
corresponding to half the frequency c/(2.33 cm). The cutoff frequency acted, in
effect, as a plasma frequency. Microwave transmission measurements indicated
that the wire mesh structure supports a longitudinal plane-wave mode as well as
two transverse modes. Penetration into the structure was demonstrated with the
introduction of defects in the form of cut wires.

Equation (8.4) suggests another way to increase the penetration of the field:
if the plasma frequency could be made much smaller, the attenuation coefficient
would decrease proportionately. Pendry et al [260, 262] showed that the plasma
frequency could be substantially reduced by using wires much thinner than those
of Sievenpiper et al.

Thin wire structures can have much smaller plasma frequencies than the
individual wires because the effective electron number density is smaller than that
in the wires and because the effective electron mass is larger than m. Consider
the structure shown in figure 8.1. If N is the average free electron density in
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Figure 8.1. Infinitely long wires arranged to define a square lattice in a plane normal to the
wires. The wires have radius r and the lattice spacing is a. From [262], with permission.

the wires, then the average electron density of this structure is just N times the
fraction of space occupied by the wires. That is, the structure has an effective
average electron density [260]

Neff = N
πr2

a2 . (8.5)

For wires of radius r = 1 µm and spacing a = 5 mm,

Neff = 1.3 × 10−7N = 1.1 × 1022 m−3. (8.6)

The effect of a force acting on an electron will depend not only on the
electron mass m but also on the self-inductance of the structure, which effectively
increases the electron mass in its response to a force. In the case of a single wire
carrying a current I , the magnetic field at a distance R from the wire has the
magnitude

H (R) = I
2π R

(8.7)

and can be obtained from the vector potential pointing along the z-axis with
magnitude

A(R) = µ0 I
2π

ln(R0/R) (8.8)

where R0 is any constant length. As discussed later, the vector potential at a point
on the surface of a wire for the structure shown in figure 8.1 is approximately
[262]

A(r) = µ0 I
2π

ln(a/r) = −µ0

2π
(Nev)(πr2) ln(a/r) (8.9)

where v is the average electron velocity.
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An electron on the wire picks up a contribution −eA(r) to its kinetic
momentum1, implying an effective electron mass meff = −eA(r)/v:

meff = 1
2µ0 Ne2r2 ln(a/r). (8.10)

For copper wires of radius r = 1 µm and spacing a = 5 mm,

meff = 1.2 × 10−26 kg = 1.3 × 104 m. (8.11)

The plasma frequency for the structure of figure 8.1 then becomes

ω2
p = Neffe2

meffε0
= 2πc2

a2 ln(a/r)
= 5.1 × 1010 rad s−1 (8.12)

or νp = ωp/2π = 8.2 GHz for our example. Note that this result depends only
on the wire radii and their spacing. The plasma frequency in our example with
copper wires is reduced by a factor ∼ 106 compared with ωp for a single wire.

The [ln(a/r)]−1 dependence of ω2
p shows the advantage of using thin wires.

The large reduction in the plasma frequency implies a large increase in the
penetration depth of the field into the structure [cf equation (8.4)]. Moreover,
if the wires were not thin and ln(a/r) ∼ 1, then the wavelength corresponding to
the plasma frequency is of the order of the lattice constant a:

λp = 2πcωp ∼ a
√

2π (8.13)

implying that diffraction effects would come into play at wavelengths comparable
to λp. For very thin wires, by contrast, λp is much larger than the lattice constant
and the continuous medium approximation is a sensible one.

It remains to justify the expression (8.9) for the vector potential for the
wire mesh shown in figure 8.1. For this purpose, Pendry et al [262] consider
a longitudinal plasmonic excitation

D = zD0e−i(ωt−kz) (8.14)

of the type inferred by Sievenpiper et al [261] in their experiments. We want to
solve the Maxwell equation

∇ × H = J + ∂ D
∂ t

(8.15)

for H , given that J is confined to the thin wires while, in the long-wavelength
approximation, D is uniform over the xy plane. The geometry suggests dividing
the xy plane into squares of side a, each wire at the centre of a square. Given the
form (8.7) of the magnetic field of a single wire, it is convenient to approximate
each square by a circle of radius Rc chosen so that the circle has the same area
1 Recall that F = eE = −e∂ A/∂t implies a change −e A in the kinetic momentum mv.

Copyright © 2005 IOP Publishing Ltd.



Negative permittivity 215

as the square (Rc = a/
√

π). To approximate the behaviour of the field in the
squares, it is assumed that, within a given circle, there is a current density

J = z
I

π R
δ(R)

(
2π

∫ ∞

0
d RR J (R) = I

)
(8.16)

and a uniformly distributed D; that the other circles make no contribution to the
field inside the given circle; and that the field vanishes on the circumference. In
the circle approximation, (8.15) takes the form

1
R

∂

∂ R
(RH ) = I

π R
δ(R) + K (8.17)

where K is constant. Choosing K so that H (Rc) = 0, we obtain for the field
inside a circle

H (R) = I
2π R

(
1 − R2

R2
c

)
(8.18)

where R is the radial distance from the wire. The vector potential of magnitude
A(R), pointing in the z direction and satisfying H = µ0

−1∇ × A (H (R) =
−µ0

−1∂ A/∂ R), can be taken to be

A(R) = µ0 I
2π

[

ln(Rc/R) + R2 − R2
c

2R2
c

]

(8.19)

for R < Rc and A(R) = 0 for R ≥ Rc. With this choice, A(R) vanishes at
the wires centred at all the other circles and the mutual inductance (involving
J i · A j between wires i and j ) is, in effect, accounted for. For very thin wires,
the logarithm in (8.19) is dominant and

A(r) ∼= µ0 I
2π

ln(a/
√

πr) ∼= µ0 I
2π

ln(a/r) (8.20)

which is (8.9).
Pendry et al [262] also reported the results of numerical solutions of

the Maxwell equations that are in close agreement with this model under the
assumption that the plasma frequency is 8.2 GHz.

Experiments on the structure shown in figure 8.2 supported the theory [262].
The most important conclusion from the experiments was that the structure shown
in figure 8.2 exhibited a sharp transmission cutoff at about 9 GHz. Below this
frequency, the transmission decreases exponentially with distance (ε < 0) but
increases rapidly towards unity as the frequency is increased above 9 GHz. In
other words, the wire mesh structure behaved in its transmission characteristics
like a low-density plasma with a plasma frequency of 9 GHz.
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Figure 8.2. Wire mesh structure with ε < 0 at frequencies below the plasma frequency.
The gold-plated wires are nominally 20 µm in diameter and laid in 120 mm × 120 mm
polystyrene sheets with a 5 mm spacing between parallel wires. From [262], with
permission.

8.2 Negative permeability

Whereas the plasma dispersion function (8.1) suggests ways to realize a negative
ε, the realization of a negative µ is a more challenging task, as familiar materials
do not exhibit this property. The key ideas leading to materials with µ < 0 were
provided by Pendry et al [263] and this section is devoted to a discussion of these
ideas. We will focus our attention on the type of negative-µ material that was
utilized shortly after publication of the theoretical work.

As in the case of the thin-wire meshes having an effective ε < 0, the
structures proposed by Pendry et al consist of periodically arranged conductors
with a lattice spacing small compared with the wavelength of radiation of interest.
Then the structure behaves, in effect, as a continuous medium characterized by a
magnetic permeability (as well as an electric permittivity).

Consider first an array of parallel conducting cylinders of radius r arranged
so that the distance between the centres of nearest-neighbour cylinders is 2a. A
magnetic field of amplitude H0 and frequency ω (2πc/ω " a), H0 parallel to the
cylinder axes, is applied. Inside a given cylinder, the magnetic field has magnitude

H = H0 + j − πr2

a2 j (8.21)

where j is the current per unit length circulating around the circumference. The
third term on the right-hand side arises from the ‘depolarizing’ effect of the
sources at the ends of the cylinders and is uniform over the unit cell of the periodic
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array [263]. The electromotive force depends on the resistance σ of the cylinder
surface as well as the rate of change of the magnetic flux:

emf = − 2πrσ j − µ0
∂

∂ t

(
πr2

[
H0 + j − πr2

a2 j

])

= − 2πrσ j + iωµ0πr2

(
H0 + j − πr2

a2 j

)
(8.22)

and the loop condition that the net emf vanishes around the circumference of a
cylinder gives the relation between the current and the applied field:

j = − H0

[1 − πr2/a2] + 2iσ/µ0ωr2 . (8.23)

This current determines the magnetic field H and can, therefore, be used
to determine the permeability. But the effective permeability of the ‘medium’
is defined in terms of the average B and H fields and these averages must be
carefully defined. Based on the integral form of the Maxwell curl equations,

∮

C
H · dr = ∂

∂ t

∫

S
D · d S (8.24)

∮

C
E · dr = − ∂

∂ t

∫

S
B · d S (8.25)

Pendry et al find it convenient (see later) to define the components of Havg as
averages along the axes of a unit cell, e.g.

(Havg)x = 1
a

∫ r=(a,0,0)

r=(0,0,0)
H · dr (8.26)

whereas the components of Bavg are defined as averages over the surface of a unit
cell, e.g.

(Bavg)x = 1
a2

∫

Sx

B · d S (8.27)

where Sx is the surface defined by the y-, z-axes of the unit cell. The x component
of the effective permeability is

(µeff)x = (Bavg)x/(Havg)x (8.28)

and, likewise, for the y and z components.
The average of H over a line element lying just outside a cylinder is

Havg = H0 − πr2

a2 j

= H0
1 + 2iσ/µ0ωr

[1 − πr2/a2] + 2iσ/µ0ωr
(8.29)
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(a)

(b)

Figure 8.3. (a) Split ring cylindrical structure in which gaps prevent currents around a
ring. However, the capacitance between the sheets separated by d allows current to flow
when a magnetic field is applied along the cylinder axis, as indicated in (b). From [262],
with permission.

where we have used (8.23), while the average of B over a unit cell is just µ0 H0.
Thus,

µ

µ0
≡ µeff

µ0
= Bavg

Havg
= 1 − πr2/a2

1 + 2iσ/µ0ωr
. (8.30)

For this ‘medium’, µ cannot be negative. However, the introduction of
internal capacitance to the cylinders leads to a resonance feature that does allow a
negative permeability. Capacitance is introduced, for example, in the ‘split ring’
configuration shown in figure 8.3. The effect of the capacitance introduced by the
split rings is indicated roughly by adding the emf

−q
C

= −2π ir j
πr2ωC

(8.31)
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to (8.22), where C is the capacitance per unit area between the sheets. This leads
to the replacement of (8.30) by

µ

µ0
= 1 − πr2/a2

1 + 2iσ/µ0ωr − 2/πµ0ω2Cr3 . (8.32)

Pendry et al [262] report the following result of detailed calculations:

µ

µ0
= 1 − πr2/a2

1 + 2iσ/µ0ωr − 3/π2µ0ω2Cr3 (8.33)

with C = ε0/d = 1/µ0dc2
0, where d is the separation between the split rings

(figure 8.3) and c0 (= 1/
√

ε0µ0) is the speed of light in vacuum. Thus,

µ

µ0
= 1 − πr2/a2

1 + 2iσ/µ0ωr − 3dc2
0/π

2ω2r3

≡ 1 − F1ω
2

ω2 − ω2
1 + iω%

(8.34)

with

F1 = πr2/a2 (8.35)

ω1 =

√
3d2c2

0

π2r3 (8.36)

% = 2σ/µ0r. (8.37)

The form (8.34) of the permeability now contains a resonance frequency ω1, a
consequence of the capacitance of the split rings, that allows the real part of µ

to be negative, depending on the applied field frequency ω. µ is negative for
frequencies ω such that

ω1 < ω < ωmp (8.38)

where ωmp = ω1/
√

1 − F1 is the ‘magnetic plasma frequency’ [262], above
which µ > 0.

Note that, in addition to introducing a capacitance and a resonance frequency
as a consequence of having a gap between the two rings, the split ring can have
a resonance at wavelengths much larger than the ring diameter, i.e. there is no
requirement that an integral number of wavelengths fit in the ring.

It has been assumed that the magnetic field is parallel to the axes of the
cylinders. In order to have an isotropic negative-permeability structure, Pendry et
al [262] suggested the following approach, based again on the idea of split rings
with capacitance. Sheets, each with an imprinted square array of split rings shown
in figure 8.4(a), are attached to inert solid blocks of thickness a and the blocks
are then stacked along the z-axis to give columns of split rings (figure 8.4(b)).
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(a)

(b)

Figure 8.4. (a) Split ring resonators in a square array with lattice spacing a. (b) Stacked
split ring resonators, with the dimensions r , c, and d defined. From [262], with permission.

The unit cell for the resulting structure is shown at the left in figure 8.5. Then the
resulting structure is cut into a series of slabs of thickness a by cutting in the yz
plane, and split rings are printed onto the surface of each slab. The slabs are then
stacked along the x-axis to give a structure with the unit cell shown in the central
cell of figure 8.5. In the final step, a third set of slabs is made by cutting in the xz
plane, printing split rings on the slabs, and then restacking them. The unit cell for
the resulting structure with a cubic symmetry is shown on the right-hand side in
figure 8.5.

Pendry et al [262] calculate for the three-dimensional structure, assuming
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Figure 8.5. Unit cells resulting from the successive steps in making a three-dimensional
negative permeability material in the way suggested by Pendry et al. From [262], with
permission.

r ≈ a, an approximate effective permeability [compare to (8.33)]

µ = 1 − πr2/a2

1 + 2"σ1/µ0ωr − 3"/π2µ0ω2C1r3

≡ 1 − Fω2

ω2 − ω2
0 + iω%

(8.39)

where σ1 is the resistance per unit length around a ring circumference and
C1 = (ε0/π) ln(2c/d) is the capacitance per unit length due to the gaps in the
split ring resonators. In this case, the resonance frequency ω0 is defined by

ω2
0 = 3"c2

0

πr3 ln(2c/d)
. (8.40)

Assuming c = 1 mm, d = 0.1 mm, " = 2 mm, and r = 2 mm, ω0 =
2π × 13.5 GHz. Together with the numerical estimates for negative ε given in
the preceding section, therefore, these estimates suggest that ε < 0 and µ < 0
might be realized simultaneously over a common frequency range by combining
thin wire and split ring structures. As discussed in section 8.3, this surmise has
been borne out by experiment.

8.2.1 Artificial dielectrics

The idea of using periodic arrays of conductors to obtain effective permittivities
and permeabilities is not new. In 1948, Kock [264] proposed using such ‘artificial
dielectrics’ as microwave lenses and constructed working examples of such
structures2. An advantage of artificial dielectrics is that the volume of actual
material is small compared with the volume of the ‘medium’ and, consequently, a
lens built from an artificial dielectric could be lighter and less bulky than the large
2 Chapter 12 of the book by Collin [265] is devoted to artificial dielectrics and contains references to
some of the early theoretical and experimental work in this area.
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microwave lenses constructed from solid dielectrics. As in the periodic arrays of
interest for negative permittivities and permeabilities, the lattice spacing must be
small compared with wavelengths of interest in order for the artificial dielectric to
mimic a continuous medium characterized by a permittivity and a permeability.

It might be interesting to note that Kock stated the formula

µ/µ0 = 1 − 2π Na3 (8.41)

for the permeability of an array of N conducting spheres of radius a but did not
comment on the possibility that µ could be negative.

8.3 Realization of negative refractive index

The preceding two sections suggest that a composite structure consisting of
periodically arranged thin wires and split ring resonators (SRRs) can have a
negative permittivity as well as a negative permeability, i.e, a negative index of
refraction. The thin wires produce a negative effective ε, while the SRRs produce
a negative effective µ. Assuming that the lattice spacing is small compared with a
wavelength, the composite structure should be characterized by the approximate
dispersion relation

k2 = n2(ω)ω2/c2 = ω2

c2

(

1 −
ω2

p

ω2

) (

1 − Fω2

ω2 − ω2
0

)

∼=
ω2 − ω2

p

c2

ω2 − ω2
b

ω2 − ω2
0

(8.42)

where ωb = ω0/
√

1 − F . There should be a passband for allowed propagation
(k2 > 0) defined by

ω0 < ω < ωb. (8.43)

This was first demonstrated in the microwave experiments of Smith et al
[244]. In their first reported experiments, they used copper split ring resonators of
the type shown in figure 8.4(b) with r = 1.5 mm, c = 0.8 mm, and d = 0.2 mm.
There were 17 rows of SRRs with a lattice spacing of 8 mm, eight elements deep
along the direction of propagation: such a structure could theoretically exhibit
a negative refractive index for a single polarization and propagation direction.
Microwave transmission measurements were made with H polarized normally to
the planes of the SRRs and E along parallel wires interspersed between the SRRs
and parallel to the SRR planes, so that a unit cell consisted of an SRR and a wire
post. Without the wires, the SRR structure exhibited a gap between propagation
passbands below and above a resonance frequency band around 4.8 GHz, as
shown in the full curve of figure 8.6. With wires alone, there was no propagation
mode. These results are consistent with a negative ε when there are no SRRs
and a negative µ in the gap region when there are no wires. With both the SRRs
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Figure 8.6. Measured transmission for an array of SRRs (full curve), showing a gap in the
propagation around 4.8 GHz, consistent with a negative permeability in the gap region.
When wires are uniformly interspersed between the SRRs, there is propagation in the
region where there had been a gap, consistent with µ and ε both being negative in that
frequency band. From [244], with permission.

and the wires in place, a passband was observed in the region where both ε and
µ are negative. The results shown in figure 8.6 provided the first experimental
evidence that a composite structure with simultaneously negative ε and µ allows
propagating electromagnetic modes.

In a second set of experiments [266], a two-dimensional metamaterial was
fabricated with square SRRs such that a unit cell consisted of six copper SRRs and
two copper wire strips on thin fibreglass boards (figure 8.7). The isotropy of this
structure was demonstrated and, as in [244], numerical solutions of Maxwell’s
equations were used to obtain dispersion curves. Figure 8.8 shows a dispersion
curve and the passband that results when both the SRRs and the wires are in
place. Note that dω/dk < 0 in the passband, i.e. the group velocity is negative, as
is necessary for the propagating waves to be left-handed.

In a paper that triggered much additional interest in the area of left-handed
light, Shelby et al [245] used this metamaterial to provide the first experimental
evidence of a negative refractive index when ε and µ are both negative. Figure
8.9 shows the basic idea of the experiment. The detector was rotated in steps
of 1.5 degrees and the data shown in figure 8.10 were obtained when teflon
and the metamaterial were alternatively used as the prism material. Because
of the corrugation at the refracting surface of the metamaterial, the angular
transmission pattern has modulations: to wash out these modulations, the data for
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Figure 8.7. (a) Split ring resonator of Shelby et al [266]: w = 2.62 mm, g = 0.46 mm,
d = 0.30 mm, and c = 0.25 mm. (b) Unit cell with orthogonal fibreglass boards and a
lattice constant of 5 mm. The wire strips are 1 cm long and on the opposite sides of the
boards from the SRRs. From [266], with permission.

Figure 8.8. Dispersion curve computed by Shelby et al. The phase advance is proportional
to the wavenumber k. Note that the group velocity dω/dk < 0 in the passband. From [266],
with permission.

the metamaterial are presented as an average over eight different sample positions.
The data for teflon are consistent with a refractive index of 1.4 ± 0.1 at 10.5 GHz.
For the metamaterial, however, Snell’s law implies a negative refractive index of
−2.7 ± 0.1.

Further experiments using the SRR and thin-wire metamaterial lent
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Figure 8.9. Schematic diagram of the experiment by Shelby et al [245]. The sample is a
two-dimensional metamaterial (see text) in the shape of a prism. The refraction angle θ as
indicated is positive, as would be the case for a positive refractive index. From [245], with
permission.

Figure 8.10. Transmitted power versus angle θ in the experiment indicated in figure
8.9. With teflon as the prism sample, the angle of refraction is positive, whereas for the
metamaterial, it is negative. The width of the beam is due to diffraction and the angular
detection sensitivity. From [245], with permission.

additional support to the conclusion that the refractive index is negative. Parazzoli
et al [267] used a one-dimensional structure (SRRs and thin wires lying on
parallel planes) and found that their structure in free space exhibits a negative
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refractive index at frequencies between 12.6 and 13.2 GHz. Their experiments
also involved larger propagation distances—up to 66 cm. Their data show that
the index varies with frequency and, from Snell’s law, has the value −1.05 at
12.6 GHz. They also carried out numerical simulations which were found to be
in good agreement with their experimental data.

Houck et al [268] used a two-dimensional structure similar to that of Shelby
et al to provide even stronger evidence of negative refraction. They emphasize
that a strict test of Snell’s law with negative refractive index requires at least two
prisms: in the case of a single prism, an observation of a negative transmission
angle could conceivably be due to different amounts of attenuation on the longer
and shorter sides of the prism. They verified that Snell’s law with a negative index
accounts consistently for the transmission angle for two different metamaterial
prisms. Using an input antenna acting as a point source in front of a planar slab,
and scanning the transmitted field, these authors also observed what appeared to
be some degree of the theoretically predicted focusing [29].

8.4 Transmission line metamaterials

Eleftheriades et al [269–272] have generalized the concept of negative refractive
index to transmission lines and have designed microwave circuits exhibiting an
effective negative refractive index.

Figure 8.11(a) shows an equivalent circuit representation for a transmission
line (e.g. a coaxial cable). Let and be the the inductance and capacitance,
respectively, per unit length, and V (x, t) and I (x, t) the voltage and current at
time t and at point x along the transmission line. Denote by !V and !I the
change in voltage and current over a small section !x :

V (x, t) + !V (x, t) = V (x, t) − !x
∂ I
∂ t

(8.44)

I (x, t) + !I (x, t) = I (x, t) − !x
∂V
∂ t

. (8.45)

Letting !x → 0,

∂V
∂x

+ ∂ I
∂ t

= 0 (8.46)

∂ I
∂x

+ ∂V
∂ t

= 0 (8.47)

or3

∂2V
∂x2 − ∂2V

∂ t2 = 0 (8.48)

3 More generally, when we include a resistance and a conductance per unit length, we obtain
the telegrapher’s equation, ∂2V/∂x2 = V + ( + )∂V/∂t + ∂2V/∂t2. See Jordan and
Balmain [273] for the circuit representation of a transmission line when resistance and conductance
are included.
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Figure 8.11. (a) An equivalent circuit, consisting of a sequence of inductors in series
and capacitors in parallel, representing a transmission line. (b) The dual transmission line
representation in which the inductors and capacitors are reversed. The time variations are
indicated according to the electrical engineering usage in which exp(jωt) is used instead
of the exp(−iωt) used in the text. From [269], with permission.

∂2 I
∂x2 − ∂2 I

∂ t2 = 0 (8.49)

implying the propagation velocity vp = 1/
√

.
Consider a sinusoidal oscillation such that ∂V/∂ t = −iωV and ∂ I/∂ t =

−iωI . Then (8.46) and (8.47) become

∂V
∂x

− iω I = 0 (8.50)

∂ I
∂x

− iω V = 0. (8.51)

These equations have the same form as the Maxwell curl equations

∂ Ex

∂x
− iωµHz = 0 (8.52)

∂ Hz

∂x
− iωεEy = 0 (8.53)
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for a transverse electromagnetic wave propagating in the x direction. The
correspondence

µ ↔
ε ↔

vp = 1√
εµ

↔ 1√ (8.54)

establishes a quantitative correspondence between the transmission line equations
(8.50) and (8.51) and the equations for transverse electromagnetic wave
propagation in a homogeneous medium [273].

Thus, the propagation of voltage and current along a transmission line is
analogous to the propagation of a plane wave in a homogeneous medium. The
analogy applies not only to the propagation equations but also to the boundary
conditions: the tangential components Ex and Hz are continuous at the boundary
between two dielectric media, while V and I are continuous at a junction in a
transmission line. In other words, there is a one-to-one correspondence, based on
(8.54), between the propagation of a plane electromagnetic wave along a sequence
of homogeneous dielectric sections and the propagation of current and voltage
along a transmission line with junctions. The solution of a propagation problem
in one case can be applied directly to obtain the solution in the other. The analogy
extends straightforwardly to two-dimensional structures.

Eleftheriades et al have exploited this analogy in the case that the equivalent
transmission line corresponds to a negative-index medium. For the ‘dual’
transmission line indicated in figure 8.11, with d the length of a unit cell,
equations (8.50) and (8.51) are replaced by

∂V
∂x

+ i
ω d

I = 0 (8.55)

∂ I
∂x

+ i
ω d

V = 0 (8.56)

in the continuous-medium approximation (2πc/ω # d). These equations
correspond to the plane-wave equations (8.52) and (8.53) when we make the
substitutions

µ ↔ − 1
ω2 d

ε ↔ − 1
ω2 d

(8.57)

or, in other words, the propagation of voltage and current in the dual transmission
line corresponds to plane-wave propagation with ε < 0 and µ < 0. The fact
that ε, µ < 0 implies a refractive index n < 0 in the case of a dielectric medium
suggests that the propagation constant β in the equation

∂2V
∂x2 + β2V = 0 (8.58)
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that follows from (8.55) and (8.56) should be taken to be negative:

β = − 1

ωd
√ (8.59)

so that the phase velocity

vp = ω

β
= −ω2d

√
(8.60)

while the group velocity

vg =
(

dβ

dω

)−1

= ω2d
√

. (8.61)

The phase and group velocities defined in this way are opposite. As in the case of
a negative-index dielectric medium, the phase velocity is negative and the group
velocity, which is in the direction of energy flow, is positive.

Equations (8.57) suggest that a host transmission line loaded with lumped
capacitors in series and inductors in parallel can be described by an effective
permittivity and an effective permeability defined by [269]

εeff = ε − 1
ω2 d

µeff = µ − 1
ω2 d

(8.62)

where ε, µ are the effective material parameters of the unperturbed transmission
line. Evidently εeff and µeff can both be negative if the frequency ω is low enough
and the spacing d of interconnecting transmission lines is short enough.

The synopsis just given is only a superficial summary of the transmission
line approach to the realization of a negative effective refractive index. Using
this approach of loading a host transmission line with lumped series capacitors
and shunt inductors, Eleftheriades et al [269–272] have performed a number
of microwave experiments that confirm the theoretical prediction that εeff and
µeff can both be negative and that, therefore, the effective refractive index neff
of the perturbed transmission line is negative. In one experiment [269], it was
demonstrated that neff < 0 leads to backward-travelling waves associated with
opposite phase and group velocities. In particular, it was shown that a guiding
structure with neff < 0 could emit a backward cone of radiation into free space,
analogous to the reversal of Cerenkov radiation predicted when the refractive
index in which a charged particle moves is negative. This is a direct consequence
of opposite phase and group velocities and the continuity of the wavevectors at
the interface of positive- and negative-index media. Grbic and Eleftheriades [269]
note that, while there are other radiating structures known to have phase and
group velocities of opposite sign, theirs is evidently ‘the first to operate in the
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Figure 8.12. Transmission line unit cell for (a) a loaded tranmsission line having an
effective refractive index that is negative and (b) an unloaded transmission line with an
effective index that is positive. From [272], with permission.

long-wavelength regime and demonstrate backward-wave radiation in its lowest
passband of operation’. Previous backward-wave sources they cite radiate in
higher-order spatial harmonics.

Grbic and Eleftheriades [272] have demonstrated a transmission-line lens
that produces images narrower than the diffraction limit. For this purpose, it is
necessary to have the analog of a negative-index dielectric slab in which it is
possible to have a growing exponential wave (section 7.9.2). Figure 8.12 shows
schematically the unit cell for a loaded (dual) transmission line (negative index)
as well as for an unloaded transmission line (positive index) and figure 8.13 shows
the actual configuration used to make an isotropic and effectively negative-index
planar lens. The loaded and unloaded grids were impedance matched so that
the lens had an effective index of −1 at 1 GHz. The half-power beam width of
the image was measured to be 0.21λ compared with the theoretical diffraction-
limited width of 0.36λ: even greater resolution ought to be possible if losses can
be reduced. The electric field measurement also showed the amplified evanescent
wave behaviour in the ‘slab’, as shown by the data in figure 8.14.

It is noteworthy that these transmission line metamaterials do not involve a
plasma-like resonance as in the wire-and-SSR structures and, consequently, they
can have an effective negative index over a large bandwidth with small dispersion.
They can also be virtually lossless. Liu et al [274] have suggested that these
structures can be used to design novel antennas which can scan all directions in
space from backfire to endfire as the frequency is varied.

8.5 Negative refraction in photonic crystals

Propagation of light in photonic bandgap structures, or photonic crystals, exhibits
properties similar to those of electrons in solids, e.g. dispersion curves with
forbidden gaps [275]. They typically involve a periodic array of holes in
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Figure 8.13. Implementation of a negative-index planar lens using the loaded and unloaded
transmission line unit cells indicated in figure 8.12. The planar lens consists of five columns
of loaded transmission lines printed on a grounded microwave substrate, shown between
the source and image points which are located symmetrically at 2.5 cells (0.135λ) from the
lens. The area external to the loaded lines consists of unloaded lines. The source is excited
by a coaxial cable and the vertical electric field is measured 0.8 mm above the surface with
a probe as shown. From [272], with permission.

a dielectric medium and are of interest, for instance, for the suppression of
spontaneous emission. As in the case of electron energy bands in solids,
the propagation of light in a photonic crystal is determined by the (photonic)
band structure. Notomi [276], following experimental observations of negative
refraction and large beam steering in a photonic crystal [277], showed, among
other things, that under certain circumstances the dispersion relation for a
photonic crystal can imply a negative effective refractive index4.

Luo et al [278,279] have shown theoretically that a photonic band is possible
such that the refractive index (and the group velocity) is positive while the
effective ‘photon mass’ ∂2ω/∂ki∂k j is such that negative refraction—without a
negative refractive index—is possible for all incident angles. This conclusion

4 Notomi [276] discusses this and other ‘anomalous light propagation phenomena’, apparently
independently of the work on negative index of refraction.
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Figure 8.14. Measured vertical electric field along the source–image line in figure 8.13.
The vertical broken lines indicate the source and image planes, while the vertical full lines
indicate the interfaces between the positive- and negative-index ‘media’. From [272], with
permission.

relies heavily on numerical computations of constant-frequency surfaces in k
space, which give the k vectors for allowed propagation modes at a given
frequency in the photonic crystal. The group velocity ∇kω is orthogonal to
these surfaces and in the direction of increasing ω. Based on such computations,
Luo et al conclude that negative refraction can occur even though the phase and
group velocities are both positive, i.e. even though the effective refractive index
is positive. The fact that a photonic crystal can exhibit negative refraction at all
angles is, of course, important for superlensing in order for all diverging rays from
a point source to be focused.

Cubukcu et al [281] demonstrated microwave (13.10–15.44 GHz) negative
refraction and subwavelength resolution in a two-dimensional photonic crystal
slab and found good agreement between their experimental data and numerical
simulations. Their photonic crystal consisted of a square array of dielectric rods
(diameter 3.15 mm, length 15 cm, lattice constant 4.79 mm) embedded in a
dielectric with ε = 9.61. The refractive index inferred from their measurements
was −1.94 compared with the theoretical value of −2.06. The full-width-at-half-
maximum width of the focused beam was found to be 0.21λ. They also observed
subwavelength resolution of two incoherent point sources separated by λ/3.

Independently, Parimi et al [282] observed wide-angle subwavelength
microwave (9.0–9.4 GHz) focusing using a flat photonic crystal lens. They also
demonstrated explicitly that their flat lens has no optical axis as in a conventional
lens.
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8.6 Remarks

The number of publications on left-handed light, negative refraction, and
metamaterials has grown very rapidly in the past few years, exceeding 200 in
2003; and it appears that this growth is likely to continue at an even faster pace.
In this and the preceding chapter, we have attempted to provide an introduction
to the basic theory and to describe some of the early seminal experiments. We
conclude this chapter by touching on a few further developments in the field.

In his ‘perfect lens’ paper, Pendry [243] suggested that, in the electrostatic
limit (ω → 0), it might be possible to obtain superlensing with a thin film for
which only ε is negative. For polarization parallel to the plane of incidence,
the reflection and transmission coefficients (7.118) and (7.121) are replaced by
corresponding expressions with ε and µ interchanged and we obtain for the
transmission coefficient in the limit ω → 0

tP = 4ε exp(ikzd)

(ε + 1)2 − (ε − 1)2 exp(2ikzd)
(8.63)

with kz = i
√

k2
x + k2

y . For ε → −1, this becomes

tP = exp(−ikzd) = exp(
√

k2
x + k2

yd). (8.64)

Thus, it should be possible, in the limit of large wavelength compared with
size scales of interest, to achieve superlensing using a thin planar film without
requiring µ to be negative. Pendry suggested that this could be done with a thin
layer of a metal like silver, for which the permittivity is well described by the
idealized plasma form and is negative below the plasma frequency. Experiments
by Fang et al [283] using evanescent waves produced by surface roughness
scattering indeed showed that evanescent wave amplification by factors ∼ 30
occurred for film thicknesses up to about 50 nm, beyond which absorption became
dominant.

At the time of writing, all of the experimental demonstrations of negative
refraction and the focusing properties of metamaterials have been in the
microwave region. Podolsky et al [284] have numerically modelled a
metamaterial that would appear to be applicable in the near-infrared and visible.
The unit cell of their metamaterial consists of two parallel nanowires with
radii small compared with the wavelength and with length comparable to the
wavelength. The spacing between the wires is small compared with their
length. Numerical modelling reported by Podolskiy et al indicates that both the
permittivity and the permeability can be negative.

Ziolkowski [285] has presented results of a detailed numerical analysis of
the transmission by a negative-index slab of both pulsed and continuous-wave
Gaussian beams and he describes some potential applications based on these
results.
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There are many potential applications of negative refraction and, obviously,
the field is in a very early stage of development. The question remains as to
whether its great promise will be realized. This question will only be answered
after further research and, in particular, after further experiments and fabrication
of metamaterials.
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